Search results for: theoretical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19366

Search results for: theoretical model

17176 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies

Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru

Abstract:

Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.

Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil

Procedia PDF Downloads 379
17175 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 99
17174 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity

Authors: Yuri Laevsky, Tatyana Nosova

Abstract:

The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.

Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation

Procedia PDF Downloads 304
17173 The Role of Sustainable Development in the Design and Planning of Smart Cities Using GIS Techniques: Models of Arab Cities

Authors: Ahmed M. Jihad

Abstract:

The paper presents the concept of sustainable development, and the role of geographic techniques in the design, planning and presentation of maps of smart cities with geographical vision, and the identification of programs and tools, and models of maps of Arab cities, is the problem of research in how to apply, process and experience these programs? What is the role of geographic techniques in planning and mapping the optimal place for these cities? The paper proposes an addition to the designs of Iraqi cities, as it can be developed in the future to serve as a model for interactive smart cities by developing its services. The importance of this paper stems from the concept of sustainable development dynamic which has become a method of development imposed by the present era in rapid development to achieve social balance and specialized programs in draw paper argues that ensuring sustainable development is achieved through the use of information technology. The paper will follow the theoretical presentation of the importance of the concept of development, design tools and programs. The paper follows the method of analysis of modern systems (System Analysis Approach) through the latest programs will provide results can be said that the new Iraqi cities can be developed with smart technologies, like some of the Arab and European cities that were newly created through the introduction of international investment, and therefore Plans can be made to select the best programs in manufacturing and producing maps and smart cities in the future.

Keywords: geographic techniques, planning the cities, smart cities, sustainable development

Procedia PDF Downloads 211
17172 Development of a One-Window Services Model for Accessing Cancer Immunotherapies

Authors: Rizwan Arshad, Alessio Panza, Nimra Inayat, Syeda Mariam Batool Kazmi, Shawana Azmat

Abstract:

The rapidly expanding use of immunotherapy for a wide range of cancers from late to early stages has, predictably, been accompanied by evidence of inequities in access to these highly effective but costly treatments. In this survey-based case study, we aimed to develop a One-window services model (OWSM) based on Anderson’s behavioral model to enhance competence in accessing cancer medications, particularly immunotherapies, through the analysis of 20 patient surveys conducted in the Armed forces bone marrow transplant center of the district, Rawalpindi from November to December 2022. The purposive sampling technique was used. Cronbach’s alpha coefficient was found to be 0.71. It was analyzed using SPSS version 26 with descriptive analysis, and results showed that the majority of the cancer patients were non-competent to access their prescribed cancer immunotherapy because of individual-level, socioeconomic, and organizational barriers.

Keywords: cancer immunotherapy, one-window services model, accessibility, competence

Procedia PDF Downloads 82
17171 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: Mustafa Tufekci, Caner Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.

Keywords: finite element analysis, sliding door mechanism, element type, structural analysis

Procedia PDF Downloads 332
17170 Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior

Authors: Mohammad Ehsani, Iman Zarei, Soudabeh Moazemigoudarzi

Abstract:

The aim of this study is to determine Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior. According to many researchers nature-based recreation activities play a significant role in the tourism industry and have provided myriad opportunities for the protection of natural areas. It is essential to investigate individuals' behavior during such activities to avoid further damage to precious and dwindling natural resources. This study develops a robust model that provides a comprehensive understanding of the formation of pro-environmental behavioral intentions among climbers of Mount Damavand National Park in Iran. To this end, we combined the theory of planned behavior (TPB), value-belief-norm theory (VBN), and a hierarchical model of leisure constraints to predict individuals’ pro-environmental hiking behavior during outdoor recreation. It was used structural equation modeling to test the theoretical framework. A sample of 787 climbers was analyzed. Among the theory of planned behavior variables, perceived behavioral control showed the strongest association with behavioral intention (β = .57). This relationship indicates that if people feel they can have fewer negative impacts on national resources while hiking, it will result in more environmentally acceptable behavior. Subjective norms had a moderate positive impact on behavioral intention, indicating the importance of other people on the individual's behavior. Attitude had a small positive effect on intention. Ecological worldview positively influenced attitude and personal belief. Personal belief (awareness of consequences and ascribed responsibility) showed a positive association with TPB variables. Although the data showed a high average score in awareness of consequences (mean = 4.219 out of 5), evidence from Damavand Mount shows that there are many environmental issues that need addressing (e.g., vast amounts of garbage). National park managers need to make sure that their solutions result in awareness about proenvironmental behavior (PEB). Findings showed that negative relationship between constraints and all TPB predictors. Providing proper restrooms and parking spaces in campgrounds, strategies controlling limiting capacity and solutions for removing waste from high altitudes are helpful to decrease the negative impact of structural constraints. In order to address intrapersonal constraints, managers should provide opportunities to interest individuals in environmental activities, such as environmental celebrations or making documentaries about environmental issues. Moreover, promoting a culture of environmental protection in the Damavand Mount area would reduce interpersonal constraints. Overall, the proposed model improved the explanatory power of the TPB by predicting 64.7% of intention compared to the original TPB that accounted for 63.8% of the variance in intention.

Keywords: theory of planned behavior, pro-environmental behavior, national park, constraints

Procedia PDF Downloads 101
17169 Evolution of Approaches to Cost Calculation in the Conditions of the Modern Russian Economy

Authors: Elena Tkachenko, Vladimir Kokh, Alina Osipenko, Vladislav Surkov

Abstract:

The modern period of development of Russian economy is fraught with a number of problems related to limitations in the use of traditional planning and financial management tools. Restrictions in the use of foreign software when performing an order of the Russian Government, on the one hand, and sanctions limiting the support of the major ERP and MRP II systems in the Russian Federation, on the other hand, entail the necessity to appeal to the basics of developing budgeting and analysis systems for industrial enterprises. Thus, cost calculation theory becomes the theoretical foundation for the development of industrial cost management systems. Based on the foregoing, it would be fair to make an assumption that the development of a working managerial accounting model on an industrial enterprise using an automated enterprise resource management system should rest upon the concept of the inevitability of alterations of business processes. On the other hand, optimized business processes make the architecture of financial analytics more transparent and permit the use of all the benefits of data cubes. The metrics and indicator slices provide online assessment of the state of key business processes at a given moment of time, which improves the quality of managerial decisions considerably. Therefore, the bilateral sanctions situation boosted the development of corporate business analytics and took industrial companies to the next level of understanding of business processes.

Keywords: cost culculation, ERP, OLAP, modern Russian economy

Procedia PDF Downloads 226
17168 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine

Authors: Jia Li, Huacong Li, Xiaobao Han

Abstract:

Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.

Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio

Procedia PDF Downloads 319
17167 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 120
17166 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 450
17165 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 128
17164 Subcontractor Development Practices and Processes: A Conceptual Model for LEED Projects

Authors: Andrea N. Ofori-Boadu

Abstract:

The purpose is to develop a conceptual model of subcontractor development practices and processes that strengthen the integration of subcontractors into construction supply chain systems for improved subcontractor performance on Leadership in Energy and Environmental Design (LEED) certified building projects. The construction management of a LEED project has an important objective of meeting sustainability certification requirements. This is in addition to the typical project management objectives of cost, time, quality, and safety for traditional projects; and, therefore increases the complexity of LEED projects. Considering that construction management organizations rely heavily on subcontractors, poor performance on complex projects such as LEED projects has been largely attributed to the unsatisfactory preparation of subcontractors. Furthermore, the extensive use of unique and non-repetitive short term contracts limits the full integration of subcontractors into construction supply chains and hinders long-term cooperation and benefits that could enhance performance on construction projects. Improved subcontractor development practices are needed to better prepare and manage subcontractors, so that complex objectives can be met or exceeded. While supplier development and supply chain theories and practices for the manufacturing sector have been extensively investigated to address similar challenges, investigations in the construction sector are not that obvious. Consequently, the objective of this research is to investigate effective subcontractor development practices and processes to guide construction management organizations in their development of a strong network of high performing subcontractors. Drawing from foundational supply chain and supplier development theories in the manufacturing sector, a mixed interpretivist and empirical methodology is utilized to assess the body of knowledge within literature for conceptual model development. A self-reporting survey with five-point Likert scale items and open-ended questions is administered to 30 construction professionals to estimate their perceptions of the effectiveness of 37 practices, classified into five subcontractor development categories. Data analysis includes descriptive statistics, weighted means, and t-tests that guide the effectiveness ranking of practices and categories. The results inform the proposed three-phased LEED subcontractor development program model which focuses on preparation, development and implementation, and monitoring. Highly ranked LEED subcontractor pre-qualification, commitment, incentives, evaluation, and feedback practices are perceived as more effective, when compared to practices requiring more direct involvement and linkages between subcontractors and construction management organizations. This is attributed to unfamiliarity, conflicting interests, lack of trust, and resource sharing challenges. With strategic modifications, the recommended practices can be extended to other non-LEED complex projects. Additional research is needed to guide the development of subcontractor development programs that strengthen direct involvement between construction management organizations and their network of high performing subcontractors. Insights from this present research strengthen theoretical foundations to support future research towards more integrated construction supply chains. In the long-term, this would lead to increased performance, profits and client satisfaction.

Keywords: construction management, general contractor, supply chain, sustainable construction

Procedia PDF Downloads 114
17163 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting

Authors: Karim Kheloufi, El Hachemi Amara

Abstract:

In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

Keywords: laser cutting, numerical simulation, heat transfer, fluid flow

Procedia PDF Downloads 343
17162 Pragmatics of Socio-Linguistic Influence on Neurologist-Patient Interaction in Selected Hospitals in Nigeria

Authors: Ayodele James Akinola

Abstract:

This study examines how social and linguistic variables influenced communication between neurologists and patients in selected university teaching hospitals (UTHs) in southwestern Nigeria. Jacob Mey’s Pragmatic Acts, complemented by Emanuel and Emanuel’s model of doctor-patient relationship, served as the theoretical framework. Data comprising 22 audio-recorded neurologist-patient interactions were collected from two UTHs in the southwestern region of Nigeria. Data revealed that educational attainment of patients has insignificant influence on the interaction where the linguistic prowess of the patient has been impaired for consultative communication. However, the status influenced the degree of attention paid to patients by neurologists and determines the amount of time 'trying to help patients to communicate'. Patients with lower educational status and who could not communicate in English spent more time narrating their ailment to neurologists. Patients with higher educational status and could communicate in English saves consultation time as they express themselves briefly unlike those who were of little or no education in the clinics. Through this, diagnoses and therapeutic processes took eight to 12 minutes. 20 minutes was the longest duration recorded. Neurologist-patient interaction in the observed hospitals is shaped by neurologists’ experience, patients’ social variables and language.

Keywords: medical pragmatics, neurologist-patient interaction, nigeria, socio-linguistic influence

Procedia PDF Downloads 275
17161 The Delone and McLean Model: A Review and Reconceptualisation for Explaining Organisational IS Success

Authors: Probir Kumar Banerjee

Abstract:

Though the revised DeLone and McLean (DM) model of IS success is found to be effective at the individual level of analysis, there is lack of consensus in regard to its effectiveness at the organisational level. This research reviews the DM model in the light of business/IT alignment theory and supporting literature, and suggests its reconceptualization. Specifically, arguments are made for augmenting it with business process quality. Business process quality, it is argued, captures the effect of intent to use, use and user satisfaction interactions, thus eliminating the need to capture their interaction effects in explaining organisational IS success. It is also argued that ‘operational performance’ driven by systems and business process quality, and higher order measures of organisational performance tied to operational performance are appropriate measures of ‘net benefit’. Suggestions are made for reconceptualisation of the other constructs and an adapted model of organisational IS success is proposed.

Keywords: organisational IS success, business/IT alignment, systems quality, business process quality, operational performance, market performance

Procedia PDF Downloads 399
17160 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 308
17159 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models

Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed

Abstract:

The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE.  Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.

Keywords: simulation model, misalignment, cogs missing, vibration analysis

Procedia PDF Downloads 287
17158 Subjective Probability and the Intertemporal Dimension of Probability to Correct the Misrelation Between Risk and Return of a Financial Asset as Perceived by Investors. Extension of Prospect Theory to Better Describe Risk Aversion

Authors: Roberta Martino, Viviana Ventre

Abstract:

From a theoretical point of view, the relationship between the risk associated with an investment and the expected value are directly proportional, in the sense that the market allows a greater result to those who are willing to take a greater risk. However, empirical evidence proves that this relationship is distorted in the minds of investors and is perceived exactly the opposite. To deepen and understand the discrepancy between the actual actions of the investor and the theoretical predictions, this paper analyzes the essential parameters used for the valuation of financial assets with greater attention to two elements: probability and the passage of time. Although these may seem at first glance to be two distinct elements, they are closely related. In particular, the error in the theoretical description of the relationship between risk and return lies in the failure to consider the impatience that is generated in the decision-maker when events that have not yet happened occur in the decision-making context. In this context, probability loses its objective meaning and in relation to the psychological aspects of the investor, it can only be understood as the degree of confidence that the investor has in the occurrence or non-occurrence of an event. Moreover, the concept of objective probability does not consider the inter-temporality that characterizes financial activities and does not consider the condition of limited cognitive capacity of the decision maker. Cognitive psychology has made it possible to understand that the mind acts with a compromise between quality and effort when faced with very complex choices. To evaluate an event that has not yet happened, it is necessary to imagine that it happens in your head. This projection into the future requires a cognitive effort and is what differentiates choices under conditions of risk and choices under conditions of uncertainty. In fact, since the receipt of the outcome in choices under risk conditions is imminent, the mechanism of self-projection into the future is not necessary to imagine the consequence of the choice and the decision makers dwell on the objective analysis of possibilities. Financial activities, on the other hand, develop over time and the objective probability is too static to consider the anticipatory emotions that the self-projection mechanism generates in the investor. Assuming that uncertainty is inherent in valuations of events that have not yet occurred, the focus must shift from risk management to uncertainty management. Only in this way the intertemporal dimension of the decision-making environment and the haste generated by the financial market can be cautioned and considered. The work considers an extension of the prospectus theory with the temporal component with the aim of providing a description of the attitude towards risk with respect to the passage of time.

Keywords: impatience, risk aversion, subjective probability, uncertainty

Procedia PDF Downloads 111
17157 External Strengthening of RC Continuous Beams Using FRP Plates: Finite Element Model

Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour

Abstract:

Fiber reinforced polymer (FRP) installation is a very effective way to repair and strengthen structures that have become structurally weak over their life span. This technique attracted the concerning of researchers during the last two decades. This paper presents a simple uniaxial nonlinear finite element model (UNFEM) able to accurately estimate the load-carrying capacity, different failure modes and the interfacial stresses of reinforced concrete (RC) continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. Results of the proposed finite element (FE) model are verified by comparing them with experimental measurements available in the literature. The agreement between numerical and experimental results is very good. Considering fracture energy of adhesive is necessary to get a realistic load carrying capacity of continuous RC beams strengthened with FRP. This simple UNFEM is able to help design engineers to model their strengthened structures and solve their problems.

Keywords: continuous beams, debonding, finite element, fibre reinforced polymer

Procedia PDF Downloads 484
17156 Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization

Authors: Mahmood Al Ramahi, G. Keszthelyi-Szabo, S. Beszedes

Abstract:

Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers.

Keywords: hydrothermal carbonization, anaerobic digestion, energy balance, sludge biodegradability, biogas

Procedia PDF Downloads 189
17155 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction

Procedia PDF Downloads 115
17154 Perceptions of Higher Education Online Learning Faculty in Lebanon

Authors: Noha Hamie Haidar

Abstract:

The purpose of this case study was to explore faculty attitudes toward online learning in a Lebanese Higher Education Institution (HEI). The research problem addressed the disinterest among faculty at the Arts, Sciences, and Technology University of Lebanon (AUL) in enhancing learning using online technology. The research questions for the study examined the attitudes of the faculty toward applying online learning and the extent of the faculty readiness to adopt this technological change. A qualitative case study design was used that employed multiple sources of information including semi-structured interviews and existing literature. The target population was AUL faculty including full-time instructors and administration (n=25). Data analysis was guided by the lens of Kanter’s theoretical approach, which focused on faculty’s awareness, desire, knowledge, ability, and reinforcement model (ADKAR) for adopting change. Key findings indicated negative impressions concerning online learning such as authority (ministry of education, culture, and rules); and change (increased enrollment and different teaching styles). Yet, within AUL’s academic environment, the opportunity for the adoption of online learning was identified; faculty showed positive elements, such as the competitive advantage to first enter the Lebanese Market, and higher student enrollment. These results may encourage AUL’s faculty to adopt online learning and to achieve a positive social change by expanding the ability of students in HEIs to compete globally.

Keywords: faculty, higher education, technology, online learning

Procedia PDF Downloads 410
17153 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 453
17152 Design of a Compact Microstrip Patch Antenna for LTE Applications by Applying FDSC Model

Authors: Settapong Malisuwan, Jesada Sivaraks, Peerawat Promkladpanao, Nattakit Suriyakrai, Navneet Madan

Abstract:

In this paper, a compact microstrip patch antenna is designed for mobile LTE applications by applying the frequency-dependent Smith-Chart (FDSC) model. The FDSC model is adopted in this research to reduce the error on the frequency-dependent characteristics. The Ansoft HFSS and various techniques is applied to meet frequency and size requirements. The proposed method within this research is suitable for use in computer-aided microstrip antenna design and RF integrated circuit (RFIC) design.

Keywords: frequency-dependent, smith-chart, microstrip, antenna, LTE, CAD

Procedia PDF Downloads 377
17151 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 71
17150 Social Entrepreneurship as an Innovative Women Empowerment Model against the Poverty in Türkiye

Authors: Rumeysa Terzioglu

Abstract:

Social entrepreneurship is not only a new concept but also an engaging factor of development that utilizes opportunities in economic and social areas for women. Social entrepreneurs have experience in determining and solving social problems with community participation. Social entrepreneurship is a consequence of individual social and economic initiatives contributing to women’s social and economic development against poverty. Women’s empowerment is an essential point for development. Türkiye has been developing an alternative empowerment model for women affected by the national development plan. Social entrepreneurship is an alternative model of social and economic empowerment of women’s status in Türkiye.

Keywords: social entrepreneurship, women, women empowerment, development

Procedia PDF Downloads 100
17149 Issues in Organizational Assessment: The Case of Frustration Tolerance Measurement in Mexico

Authors: David Ruiz, Carlos Nava, Roberto Carbajal

Abstract:

The psychological profile has become one of the most important sources of information when it comes to individual selection and the hiring process in any organization. Psychological instruments are used to collect data about variables that are considered critically important for performance in work. However, because of conceptual chaos in organizational psychology, most of the information provided by psychological testing is not directly useful for Mexican human resources professionals to take hiring decisions. The aims of this paper are 1) to underline the lack of conceptual precision in theoretical testing foundations in Mexico and 2) presenting a reliability and validity analysis of a frustration tolerance instrument created as an alternative to a heuristically conduct individual assessment in organizations. First, a description of assessment conditions in Mexico is made. Second, an instrument and a theoretical framework is presented as an alternative to the assessment practices in the country. A total of 65 Psychology Iztacala Superior Studies Faculty students were assessed. Cronbach´s alpha coefficient was calculated and an exploratory factor analysis was carried out to prove the scale unidimensionality. Reliability analysis revealed good internal consistency of the scale (Cronbach’s α = 0.825). Factor analysis produced 4 factors for the scale. However, factor loadings and explained variation give proof to the scale unidimensionality. It is concluded that the instrument has good psychometric properties that will allow human resources professionals to collect useful data. Different possibilities to conduct psychological assessment are suggested for future development.

Keywords: psychological assessment, frustration tolerance, human resources, organizational psychology

Procedia PDF Downloads 313
17148 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes

Authors: Zhuang Guo

Abstract:

In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.

Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty

Procedia PDF Downloads 79
17147 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model

Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na

Abstract:

Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.

Keywords: elastic network model, Kinesin-1, autoinhibition

Procedia PDF Downloads 459