Search results for: recurrent neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5544

Search results for: recurrent neural network

3354 Fight against Money Laundering with Optical Character Recognition

Authors: Saikiran Subbagari, Avinash Malladhi

Abstract:

Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.

Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition

Procedia PDF Downloads 144
3353 Optrix: Energy Aware Cross Layer Routing Using Convex Optimization in Wireless Sensor Networks

Authors: Ali Shareef, Aliha Shareef, Yifeng Zhu

Abstract:

Energy minimization is of great importance in wireless sensor networks in extending the battery lifetime. One of the key activities of nodes in a WSN is communication and the routing of their data to a centralized base-station or sink. Routing using the shortest path to the sink is not the best solution since it will cause nodes along this path to fail prematurely. We propose a cross-layer energy efficient routing protocol Optrix that utilizes a convex formulation to maximize the lifetime of the network as a whole. We further propose, Optrix-BW, a novel convex formulation with bandwidth constraint that allows the channel conditions to be accounted for in routing. By considering this key channel parameter we demonstrate that Optrix-BW is capable of congestion control. Optrix is implemented in TinyOS, and we demonstrate that a relatively large topology of 40 nodes can converge to within 91% of the optimal routing solution. We describe the pitfalls and issues related with utilizing a continuous form technique such as convex optimization with discrete packet based communication systems as found in WSNs. We propose a routing controller mechanism that allows for this transformation. We compare Optrix against the Collection Tree Protocol (CTP) and we found that Optrix performs better in terms of convergence to an optimal routing solution, for load balancing and network lifetime maximization than CTP.

Keywords: wireless sensor network, Energy Efficient Routing

Procedia PDF Downloads 391
3352 Network and Sentiment Analysis of U.S. Congressional Tweets

Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert

Abstract:

Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.

Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling

Procedia PDF Downloads 33
3351 Participatory Air Quality Monitoring in African Cities: Empowering Communities, Enhancing Accountability, and Ensuring Sustainable Environments

Authors: Wabinyai Fidel Raja, Gideon Lubisa

Abstract:

Air pollution is becoming a growing concern in Africa due to rapid industrialization and urbanization, leading to implications for public health and the environment. Establishing a comprehensive air quality monitoring network is crucial to combat this issue. However, conventional methods of monitoring are insufficient in African cities due to the high cost of setup and maintenance. To address this, low-cost sensors (LCS) can be deployed in various urban areas through the use of participatory air quality network siting (PAQNS). PAQNS involves stakeholders from the community, local government, and private sector working together to determine the most appropriate locations for air quality monitoring stations. This approach improves the accuracy and representativeness of air quality monitoring data, engages and empowers community members, and reflects the actual exposure of the population. Implementing PAQNS in African cities can build trust, promote accountability, and increase transparency in the air quality management process. However, challenges to implementing this approach must be addressed. Nonetheless, improving air quality is essential for protecting public health and promoting a sustainable environment. Implementing participatory and data-informed air quality monitoring can take a significant step toward achieving these important goals in African cities and beyond.

Keywords: low-cost sensors, participatory air quality network siting, air pollution, air quality management

Procedia PDF Downloads 92
3350 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: blue-green landscape network, city crossing river, four-dimensional analysis method, planning order

Procedia PDF Downloads 159
3349 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 552
3348 Reverse Logistics Network Optimization for E-Commerce

Authors: Albert W. K. Tan

Abstract:

This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.

Keywords: reverse logistics, supply chain management, optimization, e-commerce

Procedia PDF Downloads 38
3347 Exploring De-Fi through 3 Case Studies: Transparency, Social Impact, and Regulation

Authors: Dhaksha Vivekanandan

Abstract:

DeFi is a network that avoids reliance on financial intermediaries through its peer-to-peer financial network. DeFi operates outside of government control; hence it is important for us to understand its impacts. This study employs a literature review to understand DeFi and its emergence, as well as its implications on transparency, social impact, and regulation. Further, 3 case studies are analysed within the context of these categories. DeFi’s provision of increased transparency poses environmental and storage costs and can lead to user privacy being endangered. DeFi allows for the provision of entrepreneurial incentives and protection against monetary censorship and capital control. Despite DeFi's transparency issues and volatility costs, it has huge potential to reduce poverty; however, regulation surrounding DeFi still requires further tightening by governments.

Keywords: DeFi, transparency, regulation, social impact

Procedia PDF Downloads 84
3346 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 20
3345 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 138
3344 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 59
3343 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 214
3342 A Review on the Hydrologic and Hydraulic Performances in Low Impact Development-Best Management Practices Treatment Train

Authors: Fatin Khalida Abdul Khadir, Husna Takaijudin

Abstract:

Bioretention system is one of the alternatives to approach the conventional stormwater management, low impact development (LID) strategy for best management practices (BMPs). Incorporating both filtration and infiltration, initial research on bioretention systems has shown that this practice extensively decreases runoff volumes and peak flows. The LID-BMP treatment train is one of the latest LID-BMPs for stormwater treatments in urbanized watersheds. The treatment train is developed to overcome the drawbacks that arise from conventional LID-BMPs and aims to enhance the performance of the existing practices. In addition, it is also used to improve treatments in both water quality and water quantity controls as well as maintaining the natural hydrology of an area despite the current massive developments. The objective of this paper is to review the effectiveness of the conventional LID-BMPS on hydrologic and hydraulic performances through column studies in different configurations. The previous studies on the applications of LID-BMP treatment train that were developed to overcome the drawbacks of conventional LID-BMPs are reviewed and use as the guidelines for implementing this system in Universiti Teknologi Petronas (UTP) and elsewhere. The reviews on the analysis conducted for hydrologic and hydraulic performances using the artificial neural network (ANN) model are done in order to be utilized in this study. In this study, the role of the LID-BMP treatment train is tested by arranging bioretention cells in series in order to be implemented for controlling floods that occurred currently and in the future when the construction of the new buildings in UTP completed. A summary of the research findings on the performances of the system is provided which includes the proposed modifications on the designs.

Keywords: bioretention system, LID-BMP treatment train, hydrological and hydraulic performance, ANN analysis

Procedia PDF Downloads 118
3341 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City

Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jose L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jose F. Vicent

Abstract:

This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues –especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people`s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.

Keywords: social networks, spatial analysis, data visualization, geocomputation, Foursquare

Procedia PDF Downloads 426
3340 How to Talk about It without Talking about It: Cognitive Processing Therapy Offers Trauma Symptom Relief without Violating Cultural Norms

Authors: Anne Giles

Abstract:

Humans naturally wish they could forget traumatic experiences. To help prevent future harm, however, the human brain has evolved to retain data about experiences of threat, alarm, or violation. When given compassionate support and assistance with thinking helpfully and realistically about traumatic events, most people can adjust to experiencing hardships, albeit with residual sad, unfortunate memories. Persistent, recurrent, intrusive memories, difficulty sleeping, emotion dysregulation, and avoidance of reminders, however, may be symptoms of Post-traumatic Stress Disorder (PTSD). Brain scans show that PTSD affects brain functioning. We currently have no physical means of restoring the system of brain structures and functions involved with PTSD. Medications may ease some symptoms but not others. However, forms of "talk therapy" with cognitive components have been found by researchers to reduce, even resolve, a broad spectrum of trauma symptoms. Many cultures have taboos against talking about hardships. Individuals may present themselves to mental health care professionals with severe, disabling trauma symptoms but, because of cultural norms, be unable to speak about them. In China, for example, relationship expectations may include the belief, "Bad things happening in the family should stay in the family (jiāchǒu bùkě wàiyán 家丑不可外扬)." The concept of "family (jiā 家)" may include partnerships, close and extended families, communities, companies, and the nation itself. In contrast to many trauma therapies, Cognitive Processing Therapy (CPT) for Post-traumatic Stress Disorder asks its participants to focus not on "what" happened but on "why" they think the trauma(s) occurred. The question "why" activates and exercises cognitive functioning. Brain scans of individuals with PTSD reveal executive functioning portions of the brain inadequately active, with emotion centers overly active. CPT conceptualizes PTSD as a network of cognitive distortions that keep an individual "stuck" in this under-functioning and over-functioning dynamic. Through asking participants forms of the question "why," plus offering a protocol for examining answers and relinquishing unhelpful beliefs, CPT assists individuals in consciously reactivating the cognitive, executive functions of their brains, thus restoring normal functioning and reducing distressing trauma symptoms. The culturally sensitive components of CPT that allow people to "talk about it without talking about it" may offer the possibility for worldwide relief from symptoms of trauma.

Keywords: cognitive processing therapy (CPT), cultural norms, post-traumatic stress disorder (PTSD), trauma recovery

Procedia PDF Downloads 213
3339 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health

Authors: Sukran Karatas

Abstract:

Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.

Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology

Procedia PDF Downloads 347
3338 Financial Intermediation: A Transaction Two-Sided Market Model Approach

Authors: Carlo Gozzelino

Abstract:

Since the early 2000s, the phenomenon of the two-sided markets has been of growing interest in academic literature as such kind of markets differs by having cross-side network effects and same-side network effects characterizing the transactions, which make the analysis different when compared to traditional seller-buyer concept. Due to such externalities, pricing strategies can be based on subsidizing the participation of one side (i.e. considered key for the platform to attract the other side) while recovering the loss on the other side. In recent years, several players of the Italian financial intermediation industry moved from an integrated landscape (i.e. selling their own products) to an open one (i.e. intermediating third party products). According to academic literature such behavior can be interpreted as a merchant move towards a platform, operating in a two-sided market environment. While several application of two-sided market framework are available in academic literature, purpose of this paper is to use a two-sided market concept to suggest a new framework applied to financial intermediation. To this extent, a model is developed to show how competitors behave when vertically integrated and how the peculiarities of a two-sided market act as an incentive to disintegrate. Additionally, we show that when all players act as a platform, the dynamics of a two-sided markets can allow at least a Nash equilibrium to exist, in which platform of different sizes enjoy positive profit. Finally, empirical evidences from Italian market are given to sustain – and to challenge – this interpretation.

Keywords: financial intermediation, network externalities, two-sided markets, vertical differentiation

Procedia PDF Downloads 160
3337 Consumption and Diffusion Based Model of Tissue Organoid Development

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov

Abstract:

In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.

Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid

Procedia PDF Downloads 308
3336 Game of Funds: Efficiency and Policy Implications of the United Kingdom Research Excellence Framework

Authors: Boon Lee

Abstract:

Research publication is an essential output of universities because it not only promotes university recognition, it also receives government funding. The history of university research culture has been one of ‘publish or perish’ and universities have consistently encouraged their academics and researchers to produce research articles in reputable journals in order to maintain a level of competitiveness. In turn, the United Kingdom (UK) government funding is determined by the number and quality of research publications. This paper aims to investigate on whether more government funding leads to more quality papers. To that end, the paper employs a Network DEA model to evaluate the UK higher education performance over a period. Sources of efficiency are also determined via second stage regression analysis.

Keywords: efficiency, higher education, network data envelopment analysis, universities

Procedia PDF Downloads 114
3335 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
3334 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video

Authors: Nidhal Azawi

Abstract:

Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.

Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter

Procedia PDF Downloads 113
3333 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach

Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip

Abstract:

The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.

Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method

Procedia PDF Downloads 129
3332 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: deep learning, data mining, gender predication, MOOCs

Procedia PDF Downloads 148
3331 Femtocell Stationed Flawless Handover in High Agility Trains

Authors: S. Dhivya, M. Abirami, M. Farjana Parveen, M. Keerthiga

Abstract:

The development of high-speed railway makes people’s lives more and more convenient; meanwhile, handover is the major problem on high-speed railway communication services. In order to overcome that drawback the architecture of Long-Term Evolution (LTE) femtocell networks is used to improve network performance, and the deployment of a femtocell is a key for bandwidth limitation and coverage issues in conventional mobile network system. To increase the handover performance this paper proposed a multiple input multiple output (MIMO) assisted handoff (MAHO) algorithm. It is a technique used in mobile telecom to transfer a mobile phone to a new radio channel with stronger signal strength and improved channel quality.

Keywords: flawless handover, high-speed train, home evolved Node B, LTE, mobile femtocell, RSS

Procedia PDF Downloads 473
3330 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 194
3329 A Comparison between Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process for Rationality Evaluation of Land Use Planning Locations in Vietnam

Authors: X. L. Nguyen, T. Y. Chou, F. Y. Min, F. C. Lin, T. V. Hoang, Y. M. Huang

Abstract:

In Vietnam, land use planning is utilized as an efficient tool for the local government to adjust land use. However, planned locations are facing disapproval from people who live near these planned sites because of environmental problems. The selection of these locations is normally based on the subjective opinion of decision-makers and is not supported by any scientific methods. Many researchers have applied Multi-Criteria Analysis (MCA) methods in which Analytic Hierarchy Process (AHP) is the most popular techniques in combination with Fuzzy set theory for the subject of rationality assessment of land use planning locations. In this research, the Fuzzy set theory and Analytic Network Process (ANP) multi-criteria-based technique were used for the assessment process. The Fuzzy Analytic Hierarchy Process was also utilized, and the output results from two methods were compared to extract the differences. The 20 planned landfills in Hung Ha district, Thai Binh province, Vietnam was selected as a case study. The comparison results indicate that there are different between weights computed by AHP and ANP methods and the assessment outputs produced from these two methods also slight differences. After evaluation of existing planned sites, some potential locations were suggested to the local government for possibility of land use planning adjusts.

Keywords: Analytic Hierarchy Process, Analytic Network Process, Fuzzy set theory, land use planning

Procedia PDF Downloads 421
3328 Modified RSA in Mobile Communication

Authors: Nagaratna Rajur, J. D. Mallapur, Y. B. Kirankumar

Abstract:

The security in mobile communication is very different from the internet or telecommunication, because of its poor user interface and limited processing capacity, as well as combination of complex network protocols. Hence, it poses a challenge for less memory usage and low computation speed based security system. Security involves all the activities that are undertaken to protect the value and on-going usability of assets and the integrity and continuity of operations. An effective network security strategies requires identifying threats and then choosing the most effective set of tools to combat them. Cryptography is a simple and efficient way to provide security in communication. RSA is an asymmetric key approach that is highly reliable and widely used in internet communication. However, it has not been efficiently implemented in mobile communication due its computational complexity and large memory utilization. The proposed algorithm modifies the current RSA to be useful in mobile communication by reducing its computational complexity and memory utilization.

Keywords: M-RSA, sensor networks, sensor applications, security

Procedia PDF Downloads 342
3327 Systems Lens: Towards Sustainable Management of Maintenance and Renewal of Wire-Based Infrastructure: The Case of Water Network in the City of Linköping, Sweden

Authors: E. Hegazy, S. Anderberg, J. Krook

Abstract:

The city's wire-based infrastructure systems (WBIS) are responsible for the delivery of electricity, telecommunications, sanitation, drainage, and district heating and are a necessity for sustainable modern urban life. Maintaining the functionality of these structures involves high costs and, brings disturbance to the local community and effects on the environment. One key reason for this is that the cables and pipes are placed under streets, making system parts easily worn and their service lifetime reduced, and all maintenance and renewal rely on recurrent needs for excavation. In Sweden, a significant part of wire-based infrastructure is already outdated and will need to be replaced in the coming decades. The replacement of these systems will entail massive costs as well as important traffic disruption and environmental disturbance. However, this challenge may also open a unique opportunity to introduce new, more sustainable technologies and management practices. The transformation of WBIS management for long-term sustainability and meeting maintenance and renewal needs does not have a comprehensive approach. However, a systemic approach may inform WBIS management. This approach considers both technical and non-technical aspects, as well as time-related factors. Nevertheless, there is limited systemic knowledge of how different factors influence current management practices. The aim of this study is to address this knowledge gap and contribute to the understanding of what factors influence the current practice of WBIS management. A case study approach is used to identify current management practices, the underlying factors that influence them, and their implications for sustainability outcomes. The case study is based on both quantitative data on the local system and data from interviews and workshops with local practitioners and other stakeholders. Linköping was selected as a case since it provided good accessibility to the water administration and relevant data for analyzing water infrastructure management strategies. It is a sufficiently important city in Sweden to be able to identify challenges, which, to some extent, are common to all Swedish cities. By uncovering current practices and what is influencing Linköping, knowledge gaps and uncertainties related to sustainability consequences were highlighted. The findings show that goals, priorities, and policies controlling management are short-termed, and decisions on maintenance and renewal are often restricted to finding solutions to the most urgent issues. Sustainability transformation in the infrastructure area will not be possible through individual efforts without coordinated technical, organizational, business, and regulatory changes.

Keywords: case study, infrastructure, management, practice, Sweden

Procedia PDF Downloads 85
3326 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)

Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha

Abstract:

Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.

Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol

Procedia PDF Downloads 580
3325 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic

Abstract:

The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).

Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences

Procedia PDF Downloads 319