Search results for: dynamic neural networks
5236 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 945235 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4175234 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model
Procedia PDF Downloads 2805233 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach
Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee
Abstract:
The Markov Decision Process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.Keywords: Markov decision processes, dynamic programming, Monte Carlo simulation, periodic replacement, Weibull distribution
Procedia PDF Downloads 4215232 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings
Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi
Abstract:
In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel
Procedia PDF Downloads 2355231 DEA-Based Variable Structure Position Control of DC Servo Motor
Authors: Ladan Maijama’a, Jibril D. Jiya, Ejike C. Anene
Abstract:
This paper presents Differential Evolution Algorithm (DEA) based Variable Structure Position Control (VSPC) of Laboratory DC servomotor (LDCSM). DEA is employed for the optimal tuning of Variable Structure Control (VSC) parameters for position control of a DC servomotor. The VSC combines the techniques of Sliding Mode Control (SMC) that gives the advantages of small overshoot, improved step response characteristics, faster dynamic response and adaptability to plant parameter variations, suppressed influences of disturbances and uncertainties in system behavior. The results of the simulation responses of the VSC parameters adjustment by DEA were performed in Matlab Version 2010a platform and yield better dynamic performance compared with the untuned VSC designed.Keywords: differential evolution algorithm, laboratory DC servomotor, sliding mode control, variable structure control
Procedia PDF Downloads 4135230 Secure Transmission Scheme in Device-to-Device Multicast Communications
Authors: Bangwon Seo
Abstract:
In this paper, we consider multicast device-to-device (D2D) direct communication systems in cellular networks. In multicast D2D communications, nearby mobile devices exchanges, their data directly without going through a base station and a D2D transmitter send its data to multiple D2D receivers that compose of D2D multicast group. We consider wiretap channel where there is an eavesdropper that attempts to overhear the transmitted data of the D2D transmitter. In this paper, we propose a secure transmission scheme in D2D multicast communications in cellular networks. In order to prevent the eavesdropper from overhearing the transmitted data of the D2D transmitter, a precoding vector is employed at the D2D transmitter in the proposed scheme. We perform computer simulations to evaluate the performance of the proposed scheme. Through the simulation, we show that the secrecy rate performance can be improved by selecting an appropriate precoding vector.Keywords: device-to-device communications, wiretap channel, secure transmission, precoding
Procedia PDF Downloads 2915229 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 605228 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data
Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani
Abstract:
Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.Keywords: Escherichia coli, gene regulation, network, time-series
Procedia PDF Downloads 3715227 Machining Stability of a Milling Machine with Different Preloaded Spindle
Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen
Abstract:
This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the spindle unit. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change for spindle with different preload. As can be found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This implies that the machining stability of spindle tool system is affected to vary by the machine frame structure. Besides, such an effect is quite different and varied with the preload of the spindle.Keywords: bearing preload, dynamic compliance, machining stability, spindle
Procedia PDF Downloads 3845226 Exploration of Various Metrics for Partitioning of Cellular Automata Units for Efficient Reconfiguration of Field Programmable Gate Arrays (FPGAs)
Authors: Peter Tabatt, Christian Siemers
Abstract:
Using FPGA devices to improve the behavior of time-critical parts of embedded systems is a proven concept for years. With reconfigurable FPGA devices, the logical blocks can be partitioned and grouped into static and dynamic parts. The dynamic parts can be reloaded 'on demand' at runtime. This work uses cellular automata, which are constructed through compilation from (partially restricted) ANSI-C sources, to determine the suitability of various metrics for optimal partitioning. Significant metrics, in this case, are for example the area on the FPGA device for the partition, the pass count for loop constructs and communication characteristics to other partitions. With successful partitioning, it is possible to use smaller FPGA devices for the same requirements as with not reconfigurable FPGA devices or – vice versa – to use the same FPGAs for larger programs.Keywords: reconfigurable FPGA, cellular automata, partitioning, metrics, parallel computing
Procedia PDF Downloads 2685225 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method
Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah
Abstract:
LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping
Procedia PDF Downloads 2865224 Wireless Sensor Anomaly Detection Using Soft Computing
Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh
Abstract:
We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.Keywords: IDS, Machine learning, WSN, ZigBee technology
Procedia PDF Downloads 5435223 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 165222 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: water pipe networks, maintenance management, reliability analysis, optimum maintenance plan
Procedia PDF Downloads 1555221 A Terahertz Sensor and Dynamic Switch Based on a Bilayer Toroidal Metamaterial
Authors: Angana Bhattacharya, Rakesh Sarkar, Gagan Kumar
Abstract:
Toroidal resonances, a new class of electromagnetic excitations, demonstrate exceptional properties as compared to electric and magnetic dipolar resonances. The advantage of narrow linewidth in toroidal resonance is utilized in this proposed work, where a bilayer metamaterial (MM) sensor has been designed in the terahertz frequency regime (THz). A toroidal MM geometry in a single layer is first studied. A second identical MM geometry placed on top of the first layer results in the coupling of toroidal excitations, leading to an increase in the quality factor (Q) of the resonance. The sensing capability of the resonance is studied. Further, the dynamic switching from an 'off' stage to an 'on' stage in the bilayer configuration is explored. The ardent study of such toroidal bilayer MMs could provide significant potential in the development of bio-molecular and chemical sensors, switches, and modulators.Keywords: toroidal resonance, bilayer, metamaterial, terahertz, sensing, switching
Procedia PDF Downloads 1485220 Evaluation of Routing Protocols in Mobile Adhoc Networks
Authors: Anu Malhotra
Abstract:
An Ad-hoc network is one that is an autonomous, self configuring network made up of mobile nodes connected via wireless links. Ad-hoc networks often consist of nodes, mobile hosts (MH) or mobile stations (MS, also serving as routers) connected by wireless links. Different routing protocols are used for data transmission in between the nodes in an adhoc network. In this paper two protocols (OLSR and AODV) are analyzed on the basis of two parameters i.e. time delay and throughput with different data rates. On the basis of these analysis, we observed that with same data rate, AODV protocol is having more time delay than the OLSR protocol whereas throughput for the OLSR protocol is less compared to the AODV protocol.Keywords: routing adhoc, mobile hosts, mobile stations, OLSR protocol, AODV protocol
Procedia PDF Downloads 5045219 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W
Authors: Manish Kumar Rajak, Sanjay Gupta
Abstract:
Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.Keywords: mesh networks, MANET, packet count, threshold, throughput
Procedia PDF Downloads 4735218 Effect of Papaverine on Developmental Neurotoxicity: Neurosphere as in vitro Model
Authors: Mohammed Y. Elsherbeny, Mohamed Salama, Ahmed Lotfy, Hossam Fareed, Nora Mohammed
Abstract:
Background: Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on brain during the early childhood when human brains are vulnerable during this period. DNT study in vivo cannot determine the effect of the neurotoxins, as it is not applicable, so using the neurosphere cells of lab animals as an alternative is applicable and time saving. Methods: Cell culture: Rat neural progenitor cells were isolated from rat embryos’ brain. The cortices were aseptically dissected out and the tissues were triturated. The dispersed tissues were allowed to settle. The supernatant was then transferred to a fresh tube and centrifuged. The pellet was placed in Hank’s balanced salt solution and cultured as free-floating neurospheres in proliferation medium. Differentiation was initiated by growth factor withdrawal in differentiation medium and plating onto a poly-d-lysine/ laminin matrix. Chemical Exposure: Neurospheres were treated for 2 weeks with papaverine in proliferation medium. Proliferation analyses: Spheres were cultured. After 0, 4, 5, 11 and 14 days, sphere size was determined by software analyses (CellProfiler, version 2.1; Broad Institute). Diameter of each neurosphere was measured and exported to excel file further to statistical analysis. Viability test: Trypsin-EDTA solution was added to neurospheres to dissociate neurospheres into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Result: As regards proliferation analysis and percentage of viable cells of papaverin treated groups: There was no significant change in cells proliferation compared to control at 0, 4, 5, 11 and 14 days with concentrations 1, 5 and 10 µM of papaverine, but there is a significant change in cell viability compared to control after 1 week and 2 weeks with the same concentrations of papaverine. Conclusion: Papaverine has toxic effect on viability of neural cell, not on their proliferation, so it may produce focal neural lesions not growth morphological changes.Keywords: developmental neurotoxicity, neurotoxin, papaverine, neuroshperes
Procedia PDF Downloads 3825217 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia
Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera
Abstract:
With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior
Procedia PDF Downloads 1375216 Clustering of Panels and Shade Diffusion Techniques for Partially Shaded PV Array-Review
Authors: Shahida Khatoon, Mohd. Faisal Jalil, Vaishali Gautam
Abstract:
The Photovoltaic (PV) generated power is mainly dependent on environmental factors. The PV array’s lifetime and overall systems effectiveness reduce due to the partial shading condition. Clustering the electrical connections between solar modules is a viable strategy for minimizing these power losses by shade diffusion. This article comprehensively evaluates various PV array clustering/reconfiguration models for PV systems. These are static and dynamic reconfiguration techniques for extracting maximum power in mismatch conditions. This paper explores and analyzes current breakthroughs in solar PV performance improvement strategies that merit further investigation. Altogether, researchers and academicians working in the field of dedicated solar power generation will benefit from this research.Keywords: static reconfiguration, dynamic reconfiguration, photo voltaic array, partial shading, CTC configuration
Procedia PDF Downloads 1145215 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 1795214 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 1355213 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings
Authors: Amira Amamou, Mnaouar Chouchane
Abstract:
This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations
Procedia PDF Downloads 4075212 Exploring Long-Term Care Support Networks and Social Capital for Family Caregivers
Authors: Liu Yi-Hui, Chiu Fan-Yun, Lin Yu Fang, Jhang Yu Cih, He You Jing
Abstract:
The demand for care support has been rising with the aging of society and the advancement of medical science and technology. To meet rising demand, the Taiwanese government promoted the “Long Term Care Ten-Year Plan 2.0” in 2017. However, this policy and its related services failed to be fully implemented because of the ignorance of the public, and their lack of desire, fear, or discomfort in using them, which is a major obstacle to the promotion of long-term care services. Given the above context, this research objectives included the following: (1) to understand the current situation and predicament of family caregivers; (2) to reveal the actual use and assistance of government’s long-term care resources for family caregivers; and (3) to explore the support and impact of social capital on family caregivers. A semi-structured in-depth interview with five family caregivers to understand long-term care networks and social capital for family caregivers.Keywords: family caregivers, long-term care, social capital
Procedia PDF Downloads 1565211 Supply Chain Technology Adoption in Textile and Apparel Industry
Authors: Zulkifli Mohamed Udin, Lee Khai-Loon, Mohamad Ghozali Hassan
Abstract:
In today’s dynamic business environment, the competition is no longer between firms, but between supply chains to gain competitive advantages. The global manufacturing sector, especially the textile and apparel industry are essentially known for its supply chain dependency. The delicate nature of its business leads to emphasis on the smooth movement of upstream and downstream supply chain. The nature of this industry, however, result in huge dynamic flow of physical, information, and financial. The dynamic management of these flows requires adoption of supply chain technologies. Even though technology is widely implemented and studied in many industries by researchers, adoption of supply chain technologies in Malaysian textile and apparel industry is limited. There is relatively a handful academic study conducted on recent developments in Malaysian textile and apparel industry and supply chain technology adoption indicate a major gap in supply chain performance studies. Considering the importance given to Third Industrial Master Plan by the government Malaysia, it is necessary to understand the power of supply chain technology adoptions. This study aims to investigate supply chain technology adoption by textile and apparel companies in Malaysia. The result highlighted the benefits perceived by textile and apparel companies from supply chain technologies. The indifference of small and medium enterprises to operation management acts as a major inhibitor to the adoption of supply chain technologies, since they have resource limitations. This study could be used as a precursor for further detailed studies on this issue.Keywords: supply chain technology adoption, supply chain performance, textile, apparel industry
Procedia PDF Downloads 4895210 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area
Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras
Abstract:
Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.Keywords: empirical models, RMSE, shear wave velocity, standard penetration test
Procedia PDF Downloads 3375209 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage
Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik
Abstract:
The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis
Procedia PDF Downloads 3185208 Opinion Mining and Sentiment Analysis on DEFT
Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala
Abstract:
Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet
Procedia PDF Downloads 1375207 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete
Abstract:
Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed
Procedia PDF Downloads 20