Search results for: data to action
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26962

Search results for: data to action

24832 The Relationship between Emotional Intelligence and Leadership Performance

Authors: Omar Al Ali

Abstract:

The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.

Keywords: emotional intelligence, cognitive ability, leadership, performance

Procedia PDF Downloads 477
24831 The Effect of Tool Type on Surface Morphology of FSJ Joint

Authors: Yongfang Deng, Dunwen Zuo

Abstract:

An attempt is made here to join 2024 aluminum alloy plate by friction stir joining (FSJ) using different types of tools. Joint surface morphology was observed, and both arc line spacing and flash were measured. Study is carried out on the effect of pin, shoulder and eccentricity of the tool on the surface topography of the joint and the formation of the joint surface topography is analyzed. It is found that, eccentric squeezing action of the tool is the mainly motive power to form arc lines contour and flash structure. Little flash appears in the advancing side but with severe deformation, while the flash in the retreating side is heavy but with soft deformation. The pin of tool has a deep impact on the flash on the advancing side of the joints. Shoulder can widen the arc lines, refine arcs structure, reduce flash in the retreat side, but will increase the flash in the advancing side. Increasing the amount of eccentricity, it has litter effect on the arc line spacing but will destroy the arc lines morphology in the joint surface and promote the formation of filamentous flash structure in the joint.

Keywords: FSJ, surface morphology, tool, joint

Procedia PDF Downloads 363
24830 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 142
24829 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model

Authors: M. Gowri, E. K. Girija, V. Ganesh

Abstract:

Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.

Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle

Procedia PDF Downloads 189
24828 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
24827 Developing Improvements to Multi-Hazard Risk Assessments

Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson

Abstract:

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

Keywords: cascading hazards, disaster assessment, mullti-hazards, risk assessment

Procedia PDF Downloads 112
24826 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 84
24825 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 236
24824 Children’s (re)actions in the Scaffolding Process Using Digital Technologies

Authors: Davoud Masoumi, Maryam Bourbour

Abstract:

By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.

Keywords: children’ (re)actions, scaffolding process, technologies, preschools

Procedia PDF Downloads 83
24823 The Insecticidal Activity of Three Essential Oils on the Chickpea Weevil Callosobruchus Maculatus F (Coleoptera; Curculionidae)

Authors: Azzaz Siham

Abstract:

Essential oils are, by definition, secondary metabolites produced by plants as a means of defense against phytophagous pests. This work aims to study the insecticidal effect of the essential oil of three plants: Phoenician juniper Juniperus phoenicea; the Niaouli Melaleuca quinquenervia and the wild carrot Daucus carota L, on the chickpea weevil Callosobruchus maculatus F, which is known as a formidable pest of legumes. Essential oils are obtained by hydrodistillation. The study carried out in the laboratory concerning the insecticidal activity of these essential oils by contact and inhalation effect on C.maculatus gave important results, especially for the essential oil of Juniperus phoenicea for the contact test; and for the inhalation test, the essential oil of Melaleuca quinquenervia shows remarkable insecticidal activity compared to the other two oils. The results of these tests showed a very interesting action. The essential oils used very significantly describe the lifespan of adults.

Keywords: essential oils, juniperus phoenicea, melaleuca quinquenervia, daucus carota, Callosobruchus maculatus

Procedia PDF Downloads 144
24822 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 75
24821 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 189
24820 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
24819 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG

Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna

Abstract:

The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.

Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram

Procedia PDF Downloads 186
24818 Searchable Encryption in Cloud Storage

Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption

Procedia PDF Downloads 383
24817 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model

Authors: Fatemah A. Alqallaf, Debasis Kundu

Abstract:

The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.

Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators

Procedia PDF Downloads 143
24816 Blind Data Hiding Technique Using Interpolation of Subsampled Images

Authors: Singara Singh Kasana, Pankaj Garg

Abstract:

In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images.

Keywords: interpolation, image subsampling, PSNR, SIM

Procedia PDF Downloads 578
24815 Exploring the Applicability of a Rapid Health Assessment in India

Authors: Claudia Carbajal, Jija Dutt, Smriti Pahwa, Sumukhi Vaid, Karishma Vats

Abstract:

ASER Centre, the research and assessment arm of Pratham Education Foundation sees measurement as the first stage of action. ASER uses primary research to push and give empirical foundations to policy discussions at a multitude of levels. At a household level, common citizens use a simple assessment (a floor-level test) to measure learning across rural India. This paper presents the evidence on the applicability of an ASER approach to the health sector. A citizen-led assessment was designed and executed that collected information from young mothers with children up to a year of age. The pilot assessments were rolled-out in two different models: Paid surveyors and student volunteers. The survey covered three geographic areas: 1,239 children in the Jaipur District of Rajasthan, 2,086 in the Rae Bareli District of Uttar Pradesh, and 593 children in the Bhuj Block in Gujarat. The survey tool was designed to study knowledge of health-related issues, daily practices followed by young mothers and access to relevant services and programs. It provides insights on behaviors related to infant and young child feeding practices, child and maternal nutrition and supplementation, water and sanitation, and health services. Moreover, the survey studies the reasons behind behaviors giving policy-makers actionable pathways to improve implementation of social sector programs. Although data on health outcomes are available, this approach could provide a rapid annual assessment of health issues with indicators that are easy to understand and act upon so that measurements do not become an exclusive domain of experts. The results give many insights into early childhood health behaviors and challenges. Around 98% of children are breastfed, and approximately half are not exclusively breastfed (for the first 6 months). Government established diet diversity guidelines are met for less than 1 out of 10 children. Although most households are satisfied with the quality of drinking water, most tested households had contaminated water.

Keywords: citizen-led assessment, rapid health assessment, Infant and Young Children Feeding, water and sanitation, maternal nutrition, supplementation

Procedia PDF Downloads 170
24814 Creation and Annihilation of Spacetime Elements

Authors: Dnyanesh P. Mathur, Gregory L. Slater

Abstract:

Gravitation and the expansion of the universe at a large scale are generally regarded as two completely distinct phenomena. Yet, in general, relativity theory, they both manifest as 'curvature' of spacetime. We propose a hypothesis which treats these two 'curvature-producing' phenomena as aspects of an underlying process. This process treats spacetime itself as composed of discrete units (Plancktons) and is 'dynamic' in the sense that these elements of spacetime are continually being both created and annihilated. It is these two complementary processes of Planckton creation and Planckton annihilation which manifest themselves as - 'cosmic expansion' on the one hand and as 'gravitational attraction’ on the other. The Planckton hypothesis treats spacetime as a perfect fluid in the same manner as the co-moving frame of reference of Friedman equations and the Gullstrand-Painleve metric; i.e.Planckton hypothesis replaces 'curvature' of spacetime by the 'flow' of Plancktons (spacetime). Here we discuss how this perspective may allow a unified description of both cosmological and gravitational acceleration as well as providing a mechanism for inducing an irreducible action at every point associated with the creation and annihilation of Plancktons, which could be identified as the zero point energy.

Keywords: discrete spacetime, spacetime flow, zero point energy, planktons

Procedia PDF Downloads 114
24813 Genistein Suppresses Doxorubicin Associated Genotoxicity in Human Lymphocytes

Authors: Tanveer Beg, Yasir H. Siddique, Gulshan Ara, Asfar S. Azmi, Mohammad Afzal

Abstract:

Doxorubicin is a well-known DNA intercalating chemotherapy drug that is widely used for treatment of different cancers. Its clinical utility is limited due to the observed genotoxic side effects on healthy cells suggesting that newer combination and genoprotective regimens are urgently needed for the management of doxorubicin chemotherapy. Some dietary phytochemicals are well known for their protective mechanism of action and genistein from soy is recognized as an anti-oxidant with similar properties. Therefore, the present study investigates the effect of genistein against the genotoxic doses of doxorubicin by assessing chromosomal aberrations, sister chromatid exchanges, cell cycle kinetics, cell viability, apoptosis, and DNA damage markers in cultured human lymphocytes. Our results reveal that genistein treatment significantly suppresses genotoxic damage induced by doxorubicin. It is concluded that genistein has the potential to reduce the genotoxicity induced by anti-cancer drugs, thereby reducing the chances of developing secondary tumors during the therapy.

Keywords: apoptosis, DNA damage markers, doxorubicin, genistein, genotoxicity, human lymphocyte culture

Procedia PDF Downloads 360
24812 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 112
24811 The Effect of Salinity and Bentonite on the Hydrous Behaviors and Sodium Content of the Broad Bean Vicia faba var. Semilla violeta

Authors: T. Nouri, Y. H. A. Reguieg, A. Latigui, A. Ouaini

Abstract:

Salinity is considered as the most important abiotic factor. It limits growth and productivity of plants and degrades agricultural soils and ecosystem in arid and semi arid area. The study was conducted on Vicia faba L.’Semilla violeta’. Sowing was realized in plastic pots containing sandy substrates of bentonite 0, 3, 5, 7, and 10% associated with abiotic stresses of salinity corresponding to doses of NaCl, MgCl2 and MgSO4 20, 40, and 60 mmol/l respectively. The purpose of this work is to study the combined effect of salinity and of bentonite on a plant commonly cultivated in Algeria the broad bean Vicia faba has through the chemical and hydrous parameter. The results show that the combined action of strong concentration salt (40 and 60 mmol/l) and of bentonite a reduction of the relative content water reveals, against an increase in the content of hydrous deficit and of sodium. The growth of broad bean is significant in the substrate amended to 5 % of bentonite.

Keywords: salinity, bentonite, Vicia faba L, sodium content, hydrous parameters

Procedia PDF Downloads 367
24810 Active Contours for Image Segmentation Based on Complex Domain Approach

Authors: Sajid Hussain

Abstract:

The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.

Keywords: image segmentation, active contour, level set, Mumford and Shah model

Procedia PDF Downloads 114
24809 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 158
24808 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
24807 Contemporary Arabic Novel Probing the Self and the Other: A Contrapuntal Study of Identity, Sexuality, and Fundamentalism

Authors: Jihan Mahmoud

Abstract:

This paper examines the role played by Arabic novelists in revolutionary change in the Arab world, discussing themes of identity, sexuality and fundamentalism as portrayed in a selection of modern and contemporary Arabic novels that are either written in English or translated from Arabic into English. It particularly focuses on the post-Naguib Mahfouz era. Taking my cue from the current political changes in the Arab world, starting with 9/11/ terrorist attacks in the USA and the UK, the ‘Arab Spring’ revolutions, the rise of political Islam and the emergence of Isis, the Islamic state in Iraq and the Levant, the study analyses the differences in the ways contemporary Arab novelists from different Arabic countries represent the interaction between identity, sexual politics and fundamentalist ideas in the Arab world, with a specific focus on the overlap between literature, religion and international politics in the region. It argues that the post-Mahfouz era marked a new phase in the development of the political Arabic novel not only as a force of resistance against political-religious oppression, but as a call for revolution as well. Thus, the Arabic novel reshapes values and prompts future action.

Keywords: Arabic novel, Islam, politics, sexuality

Procedia PDF Downloads 526
24806 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University

Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang

Abstract:

Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.

Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University

Procedia PDF Downloads 316
24805 Roles of Governmental and Non-governmental Bodies on Chain Remand Complaints in Malaysia

Authors: Ifa Sirrhu Samsudin, Ramalinggam Rajamanickam, Rohaida Nordin

Abstract:

The practice of chain remand would cause human rights violations if the application was granted without reasonable cause and reason. This chain remand problem was tried to be addressed in 2007, which was amongst the factors that led to the amendment of the Criminal Procedure Code (CPC) at that time due to the defilement of human liberty. In Malaysia, there are governmental and non-governmental bodies that are active in ensuring that the human rights of the entire community are protected from being violated. The issue of wrongful detention involving chain remand during an investigation is not a new issue. This issue is constantly highlighted and efforts to address it are often raised by the responsible parties. This study aims to analyse the roles of these bodies in dealing with chain remand complaints in Malaysia using a qualitative research approach by way of in-depth interviews, roundtable discussions and documents analysis. The study discovered that these bodies were able to investigate the complaints but did not have a role in taking any actions. Their role is only to provide recommendations to the complainants to take action. Therefore, this study suggested the function should be given to certain bodies to curb the problem based on solid evidence.

Keywords: liberty, complaints, chain remand, government

Procedia PDF Downloads 182
24804 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: adaptive reuse, analytic network process, big data, land use strategy

Procedia PDF Downloads 203
24803 Interoperability Standard for Data Exchange in Educational Documents in Professional and Technological Education: A Comparative Study and Feasibility Analysis for the Brazilian Context

Authors: Giovana Nunes Inocêncio

Abstract:

The professional and technological education (EPT) plays a pivotal role in equipping students for specialized careers, and it is imperative to establish a framework for efficient data exchange among educational institutions. The primary focus of this article is to address the pressing need for document interoperability within the context of EPT. The challenges, motivations, and benefits of implementing interoperability standards for digital educational documents are thoroughly explored. These documents include EPT completion certificates, academic records, and curricula. In conjunction with the prior abstract, it is evident that the intersection of IT governance and interoperability standards holds the key to transforming the landscape of technical education in Brazil. IT governance provides the strategic framework for effective data management, aligning with educational objectives, ensuring compliance, and managing risks. By adopting interoperability standards, the technical education sector in Brazil can facilitate data exchange, enhance data security, and promote international recognition of qualifications. The utilization of the XML (Extensible Markup Language) standard further strengthens the foundation for structured data exchange, fostering efficient communication, standardization of curricula, and enhancing educational materials. The IT governance, interoperability standards, and data management critical role in driving the quality, efficiency, and security of technical education. The adoption of these standards fosters transparency, stakeholder coordination, and regulatory compliance, ultimately empowering the technical education sector to meet the dynamic demands of the 21st century.

Keywords: interoperability, education, standards, governance

Procedia PDF Downloads 70