Search results for: dynamic learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10853

Search results for: dynamic learning

8753 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
8752 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, Markov chain, optimization, wastewater

Procedia PDF Downloads 487
8751 The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar

Authors: Abdullah Abu-Tineh, Youmen Chaaban

Abstract:

This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.

Keywords: initiative, professional development, school based support Program (SBSP), school reform

Procedia PDF Downloads 495
8750 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 270
8749 Non-Cognitive Skills Associated with Learning in a Serious Gaming Environment: A Pretest-Posttest Experimental Design

Authors: Tanja Kreitenweis

Abstract:

Lifelong learning is increasingly seen as essential for coping with the rapidly changing work environment. To this end, serious games can provide convenient and straightforward access to complex knowledge for all age groups. However, learning achievements depend largely on a learner’s non-cognitive skill disposition (e.g., motivation, self-belief, playfulness, and openness). With the aim of combining the fields of serious games and non-cognitive skills, this research focuses in particular on the use of a business simulation, which conveys change management insights. Business simulations are a subset of serious games and are perceived as a non-traditional learning method. The presented objectives of this work are versatile: (1) developing a scale, which measures learners’ knowledge and skills level before and after a business simulation was played, (2) investigating the influence of non-cognitive skills on learning in this business simulation environment and (3) exploring the moderating role of team preference in this type of learning setting. First, expert interviews have been conducted to develop an appropriate measure for learners’ skills and knowledge assessment. A pretest-posttest experimental design with German management students was implemented to approach the remaining objectives. By using the newly developed, reliable measure, it was found that students’ skills and knowledge state were higher after the simulation had been played, compared to before. A hierarchical regression analysis revealed two positive predictors for this outcome: motivation and self-esteem. Unexpectedly, playfulness had a negative impact. Team preference strengthened the link between grit and playfulness, respectively, and learners’ skills and knowledge state after completing the business simulation. Overall, the data underlined the potential of business simulations to improve learners’ skills and knowledge state. In addition, motivational factors were found as predictors for benefitting most from the applied business simulation. Recommendations are provided for how pedagogues can use these findings.

Keywords: business simulations, change management, (experiential) learning, non-cognitive skills, serious games

Procedia PDF Downloads 108
8748 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface

Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar

Abstract:

In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.

Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity

Procedia PDF Downloads 142
8747 Satisfaction of the Training at ASEAN Camp: E-Learning Knowledge and Application at Chantanaburi Province, Thailand

Authors: Sinchai Poolklai

Abstract:

The purpose of this research paper was aimed to examine the level of satisfaction of the faculty members who participated in the ASEAN camp, Chantaburi, Thailand. The population of this study included all the faculty members of Suan Sunandha Rajabhat University who participated in the training and activities of the ASEAN camp during March, 2014. Among a total of 200 faculty members who answered the questionnaire, the data was complied by using SPSS program. Percentage, mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of satisfaction was 4.37, and standard deviation was 0.7810. Moreover, the mean average can be used to rank the level of satisfaction from each of the following factors: lower cost, less time consuming, faster delivery, more effective learning, and lower environment impact.

Keywords: ASEAN camp, e-learning, satisfaction, application

Procedia PDF Downloads 391
8746 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom

Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan

Abstract:

Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.

Keywords: circle work, relational pedagogies, decolonization, distance education

Procedia PDF Downloads 76
8745 Enhancing Student Learning Outcomes Using Engineering Design Process: Case Study in Physics Course

Authors: Thien Van Ngo

Abstract:

The engineering design process is a systematic approach to solving problems. It involves identifying a problem, brainstorming solutions, prototyping and testing solutions, and evaluating the results. The engineering design process can be used to teach students how to solve problems in a creative and innovative way. The research aim of this study was to investigate the effectiveness of using the engineering design process to enhance student learning outcomes in a physics course. A mixed research method was used in this study. The quantitative data were collected using a pretest-posttest control group design. The qualitative data were collected using semi-structured interviews. The sample was 150 first-year students in the Department of Mechanical Engineering Technology at Cao Thang Technical College in Vietnam in the 2022-2023 school year. The quantitative data were collected using a pretest-posttest control group design. The pretest was administered to both groups at the beginning of the study. The posttest was administered to both groups at the end of the study. The qualitative data were collected using semi-structured interviews with a sample of eight students in the experimental group. The interviews were conducted after the posttest. The quantitative data were analyzed using independent sample T-tests. The qualitative data were analyzed using thematic analysis. The quantitative data showed that students in the experimental group, who were taught using the engineering design process, had significantly higher post-test scores on physics problem-solving than students in the control group, who were taught using the conventional method. The qualitative data showed that students in the experimental group were more motivated and engaged in the learning process than students in the control group. Students in the experimental group also reported that they found the engineering design process to be a more effective way of learning physics. The findings of this study suggest that the engineering design process can be an effective way of enhancing student learning outcomes in physics courses. The engineering design process engages students in the learning process and helps them to develop problem-solving skills.

Keywords: engineering design process, problem-solving, learning outcome of physics, students’ physics competencies, deep learning

Procedia PDF Downloads 65
8744 New Dynamic Constitutive Model for OFHC Copper Film

Authors: Jin Sung Kim, Hoon Huh

Abstract:

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

Keywords: rate dependent material properties, dynamic constitutive model, OFHC copper film, strain rate

Procedia PDF Downloads 486
8743 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 97
8742 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 203
8741 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model

Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik

Abstract:

In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.

Keywords: growth management, land use externalities, land value, spatial panel dynamic

Procedia PDF Downloads 256
8740 Students’ Post COVID-19 Experiences with E-Learning Platforms among Undergraduate Students of Public Universities in the Ashanti Region, Ghana

Authors: Michael Oppong, Stephanie Owusu Ansah, Daniel Ofori

Abstract:

The study investigated students’ post-covid-19 experiences with e-learning platforms among undergraduate students of public universities in the Ashanti region of Ghana. The study respectively drew 289 respondents from two public universities, i.e., Kwame Nkrumah University of Science and Technology (KNUST) Business School and the Kumasi Technical University (KsTU) Business School in Ghana. Given that the population from the two public universities was fairly high, sampling had to be done. The overall population of the study was 480 students randomly sampled from the two public universities using the sampling ratio given by Alreck and Settle (2004). The population constituted 360 students from the Kwame Nkrumah University of Science and Technology (KNUST) Business School and 120 from the Kumasi Technical University Business School (KsTU). The study employed questionnaires as a data collection tool. The data gathered were 289 responses out of 480 questionnaires administered, representing 60.2%. The data was analyzed using pie charts, bar charts, percentages, and line graphs. Findings revealed that the e-learning platforms were still useful. However, the students used it on a weekly basis post-COVID-19, unlike in the COVID-19 era, where it was used daily. All other academic activities, with the exception of examinations, are still undertaken on the e-learning platforms; however, it is underutilized in the post-COVID-19 experience. The study recommends that universities should invest in infrastructure development to enable all academic activities, most especially examinations, to be undertaken using the e-learning platforms to curtail future challenges.

Keywords: e-learning platform, undergraduate students, post-COVID-19 experience, public universities

Procedia PDF Downloads 98
8739 Role of Special Training Centers (STC) in Right to Education Act Challenges And Remedies

Authors: Anshu Radha Aggarwal

Abstract:

As per the Right to Education Act (RTE), 2009, every child in the age group of 6-14 years shall be admitted in a neighborhood school. All the Out of School Children identified have to be enrolled / mainstreamed in to age appropriate class and there-after be provided special training. This paper addresses issues emerging from provisions in the RTE Act that specifically refer to the enrolment of out-of school children into age appropriate classes and the requirement to provide special trainings that will enable this to take place. In the context of RTE Act, the Out-of-School Children are first enrolled in the formal school and then they are provided with Special Training through NRSTCs (Long Term / Short term basis). These centers are functioning in formal school campus itself. This paper specifies the role of special training centers (STC). It presents a re-envisioning of assessment that recognizes two principal functions of assessment, assessment for learning and assessment of learning, instead of the more familiar categories of formative, diagnostic, summative, and evaluative assessment. The use of these two functions of assessment highlights and emphasizes the role of special training centers (STC) to assess their level for giving them appropriate special training and to evaluate their improvement in learning level. Challenge of problem faced by teachers to do diagnostic assessment, including its place in the sequence of assessment procedures appropriate in identifying and addressing individual children’s learning difficulties are solved by special training centers (STC). It is important that assessment is used to identify children with learning difficulties at the earliest possible stage so that appropriate support and intervention can be put in place. So appropriate challenges with tools are presented here for their assessment at entry level and at completion level of primary children by special training centers (STC).

Keywords: right to education, assessment, challenges, out of school children

Procedia PDF Downloads 461
8738 Frequency-Dependent and Full Range Tunable Phase Shifter

Authors: Yufu Yin, Tao Lin, Shanghong Zhao, Zihang Zhu, Xuan Li, Wei Jiang, Qiurong Zheng, Hui Wang

Abstract:

In this paper, a frequency-dependent and tunable phase shifter is proposed and numerically analyzed. The key devices are the dual-polarization binary phase shift keying modulator (DP-BPSK) and the fiber Bragg grating (FBG). The phase-frequency response of the FBG is employed to determine the frequency-dependent phase shift. The simulation results show that a linear phase shift of the recovered output microwave signal which depends on the frequency of the input RF signal is achieved. In addition, by adjusting the power of the RF signal, the full range phase shift from 0° to 360° can be realized. This structure shows the spurious free dynamic range (SFDR) of 70.90 dB·Hz2/3 and 72.11 dB·Hz2/3 under different RF powers.

Keywords: microwave photonics, phase shifter, spurious free dynamic range, frequency-dependent

Procedia PDF Downloads 296
8737 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine

Authors: Joseph Soliman, Youssef Attia, Khairy Megalla

Abstract:

The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.

Keywords: stirling engine, solar energy, new energy, dynamic motion

Procedia PDF Downloads 423
8736 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 100
8735 Investigating Secondary Students’ Attitude towards Learning English

Authors: Pinkey Yaqub

Abstract:

The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.

Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude

Procedia PDF Downloads 228
8734 Machine Learning in Momentum Strategies

Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu

Abstract:

The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.

Keywords: information coefficient, machine learning, momentum, portfolio, return prediction

Procedia PDF Downloads 53
8733 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model

Procedia PDF Downloads 280
8732 Cooperative Learning Mechanism in Intelligent Multi-Agent System

Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour

Abstract:

In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning

Procedia PDF Downloads 685
8731 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach

Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee

Abstract:

The Markov Decision Process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.

Keywords: Markov decision processes, dynamic programming, Monte Carlo simulation, periodic replacement, Weibull distribution

Procedia PDF Downloads 424
8730 Learning Materials for Enhancing Sustainable Colour Fading Process of Fashion Products

Authors: C. W. Kan, H. F. Cheung, Y. S. Lee

Abstract:

This study examines the results of colour fading of cotton fabric by plasma-induced ozone treatment, with an aim to provide learning materials for fashion designers when designing colour fading effects in fashion products. Cotton knitted fabrics were dyed with red reactive dye with a colour depth of 1.5% and were subjected to ozone generated by a commercially available plasma machine for colour fading. The plasma-induced ozone treatment was conducted with different parameters: (i) air concentration = 10%, 30%, 50% and 70%; (ii) water content in fabric = 35% and 45%, and (iii) treatment time = 10 minutes, 20 minutes and 30 minutes. Finally, the colour properties of the plasma–induced ozone treated fabric were measured by spectrophotometer under illuminant D65 to obtain the CIE L*, CIE a* and CIE b* values.

Keywords: learning materials, colour fading, colour properties, fashion products

Procedia PDF Downloads 282
8729 Expanding Learning Reach: Innovative VR-Enabled Retention Strategies

Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im

Abstract:

The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.

Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning

Procedia PDF Downloads 65
8728 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings

Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi

Abstract:

In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.

Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel

Procedia PDF Downloads 236
8727 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 128
8726 The Design Method of Artificial Intelligence Learning Picture: A Case Study of DCAI's New Teaching

Authors: Weichen Chang

Abstract:

To create a guided teaching method for AI generative drawing design, this paper develops a set of teaching models for AI generative drawing (DCAI), which combines learning modes such as problem-solving, thematic inquiry, phenomenon-based, task-oriented, and DFC . Through the information security AI picture book learning guided programs and content, the application of participatory action research (PAR) and interview methods to explore the dual knowledge of Context and ChatGPT (DCAI) for AI to guide the development of students' AI learning skills. In the interviews, the students highlighted five main learning outcomes (self-study, critical thinking, knowledge generation, cognitive development, and presentation of work) as well as the challenges of implementing the model. Through the use of DCAI, students will enhance their consensus awareness of generative mapping analysis and group cooperation, and they will have knowledge that can enhance AI capabilities in DCAI inquiry and future life. From this paper, it is found that the conclusions are (1) The good use of DCAI can assist students in exploring the value of their knowledge through the power of stories and finding the meaning of knowledge communication; (2) Analyze the transformation power of the integrity and coherence of the story through the context so as to achieve the tension of ‘starting and ending’; (3) Use ChatGPT to extract inspiration, arrange story compositions, and make prompts that can communicate with people and convey emotions. Therefore, new knowledge construction methods will be one of the effective methods for AI learning in the face of artificial intelligence, providing new thinking and new expressions for interdisciplinary design and design education practice.

Keywords: artificial intelligence, task-oriented, contextualization, design education

Procedia PDF Downloads 29
8725 A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum

Authors: R. Bawazir, P. Jones

Abstract:

Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.

Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework

Procedia PDF Downloads 321
8724 DEA-Based Variable Structure Position Control of DC Servo Motor

Authors: Ladan Maijama’a, Jibril D. Jiya, Ejike C. Anene

Abstract:

This paper presents Differential Evolution Algorithm (DEA) based Variable Structure Position Control (VSPC) of Laboratory DC servomotor (LDCSM). DEA is employed for the optimal tuning of Variable Structure Control (VSC) parameters for position control of a DC servomotor. The VSC combines the techniques of Sliding Mode Control (SMC) that gives the advantages of small overshoot, improved step response characteristics, faster dynamic response and adaptability to plant parameter variations, suppressed influences of disturbances and uncertainties in system behavior. The results of the simulation responses of the VSC parameters adjustment by DEA were performed in Matlab Version 2010a platform and yield better dynamic performance compared with the untuned VSC designed.

Keywords: differential evolution algorithm, laboratory DC servomotor, sliding mode control, variable structure control

Procedia PDF Downloads 415