Search results for: data transfer optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29556

Search results for: data transfer optimization

27456 Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method

Authors: Marzieh Joda, Narges Fallah, Neda Afsham

Abstract:

Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments.

Keywords: Electro deposition, Nickel oxide-hydroxide, Nitrogen selectivity, Ammonia oxidation

Procedia PDF Downloads 221
27455 A Comparison of Alternative Traffic Controls for Interchange Ramp Areas Using Synchro Software

Authors: Mohamed Mesbah, Bruce Janson

Abstract:

An interchange is the most important component of freeway and highway facilities. It is working as a connector between the highway’s elements. The main goal of designing interchanges is to provide an acceptable level of service and delay to make vehicles move smoothly when they are entering and exiting the interchange. There are many factors that can have a significant impact on the level of service; the main factors are traffic volumes, and type of interchange. This paper will discuss interchange with roundabouts under various values of traffic volumes to determine the level of service of the interchanges that will be studied in this paper and replace the system of interchange from roundabout to traffic signal to make a significant compression between these systems. A secondary goal is to propose improvements for scenarios where the level of service is deemed unacceptable. This will be achieved using Synchro traffic simulation software, which facilitates the simulation and optimization of interchanges to enhance operational efficiency and safety.

Keywords: interchange, roundabout, traffic signal, Synchro, delay, level of service, traffic volumes, vehicles, simulation, optimization, adjustment

Procedia PDF Downloads 17
27454 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 153
27453 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation

Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran

Abstract:

In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.

Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility

Procedia PDF Downloads 396
27452 Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm

Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii

Abstract:

This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions.

Keywords: optimization problems, traveling salesman problem, heuristic algorithms, “onion husk” algorithm, pseudo-geometric version

Procedia PDF Downloads 207
27451 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning

Authors: Yinheng Li

Abstract:

The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.

Keywords: in-context learning, prompt engineering, zero-shot learning, large language models

Procedia PDF Downloads 83
27450 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization

Authors: Ramakrishna Rao Mamidi

Abstract:

It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.

Keywords: direct search, flux plot, fourier analysis, permanent magnets

Procedia PDF Downloads 216
27449 Optimization of Ultrasonic Assisted Extraction of Antioxidants and Phenolic Compounds from Coleus Using Response Surface Methodology

Authors: Reihaneh Ahmadzadeh Ghavidel

Abstract:

Free radicals such as reactive oxygen species (ROS) have detrimental effects on human health through several mechanisms. On the other hand, antioxidant molecules reduce free radical generation in biologic systems. Synthetic antioxidants, which are used in food industry, have also negative impact on human health. Therefore recognition of natural antioxidants such as anthocyanins can solve these problems simultaneously. Coleus (Solenostemon scutellarioides) with red leaves is a rich source of anthocyanins compounds. In this study we evaluated the effect of time (10, 20 and 30 min) and temperature (40, 50 and 60° C) on optimization of anthocyanin extraction using surface response method. In addition, the study was aimed to determine maximum extraction for anthocyanin from coleus plant using ultrasound method. The results indicated that the optimum conditions for extraction were 39.84 min at 69.25° C. At this point, total compounds were achieved 3.7451 mg 100 ml⁻¹. Furthermore, under optimum conditions, anthocyanin concentration, extraction efficiency, ferric reducing ability, total phenolic compounds and EC50 were registered 3.221931, 6.692765, 223.062, 3355.605 and 2.614045, respectively.

Keywords: anthocyanin, antioxidant, coleus, extraction, sonication

Procedia PDF Downloads 320
27448 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 436
27447 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 138
27446 The Role Of Data Gathering In NGOs

Authors: Hussaini Garba Mohammed

Abstract:

Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.

Keywords: reliable information, data assessment, data mining, data communication

Procedia PDF Downloads 179
27445 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization

Procedia PDF Downloads 152
27444 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling

Procedia PDF Downloads 408
27443 Biosignal Measurement System Based on Ultra-Wide Band Human Body Communication

Authors: Jonghoon Kim, Gilwon Yoon

Abstract:

A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strong security measures since it does not use wireless network. Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.

Keywords: biosignal, human body communication, mobile health, PPG, ultrawide band

Procedia PDF Downloads 476
27442 Thermal Network Model for a Large Scale AC Induction Motor

Authors: Sushil Kumar, M. Dakshina Murty

Abstract:

Thermal network modelling has proven to be important tool for thermal analysis of electrical machine. This article investigates numerical thermal network model and experimental performance of a large-scale AC motor. Experimental temperatures were measured using RTD in the stator which have been compared with the numerical data. Thermal network modelling fairly predicts the temperature of various components inside the large-scale AC motor. Results of stator winding temperature is compared with experimental results which are in close agreement with accuracy of 6-10%. This method of predicting hot spots within AC motors can be readily used by the motor designers for estimating the thermal hot spots of the machine.

Keywords: AC motor, thermal network, heat transfer, modelling

Procedia PDF Downloads 326
27441 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 119
27440 Optimization of Stevia Concentration in Rasgulla (Sweet Syrup Cheese Ball) Based on Quality

Authors: Gurveer Kaur, T. K. Goswami

Abstract:

Rasgulla (a sweet syrup cheese ball), a sweet, spongy dessert represents traditional sweet dish of an Indian subcontinent prepared by chhana. 100 g of Rasgulla contains 186 calories, and so it is a driving force behind obesity and diabetes. To reduce Rasgulla’s energy value sucrose mainly should be minimized, so instead of sucrose, stevia (zero calories natural sweetener) is used to prepare Rasgulla. In this study three samples were prepared with sucrose to stevia ratio taking 100:0 (as control sample), (i) 50:50 (T1); (ii) 25:75 (T2), and (iii) 0:100 (T3) from 4% fat milk. It was found that as the sucrose concentration decreases the percentage of fat increase in the Rasgulla slightly. Sample T2 showed < 0.1% (±0.06) sucrose content. But there was no significant difference on protein and ash content of the samples. Whitening index was highest (78.0 ± 0.13) for T2 and lowest (65.7 ± 0.21) for the control sample since less sucrose in syrup reduces the browning of the sample (T2). Energy value per 100 g was calculated to be 50, 72, 98, and 184 calories for T3, T2, T1 and control samples, respectively. According to optimization study, the preferred (high quality) order of samples was as follows: T1 > T1 > control > T3. Low sugar content Rasgulla with acceptable quality can be prepared with 25:75 ratio of sucrose to stevia.

Keywords: composition, rasgulla, sensory, stevia

Procedia PDF Downloads 206
27439 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 454
27438 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h₀, pitch amplitude θ₀ and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: numerical simulation, flapping wing, energy extraction, power coefficient, efficiency, RBF, NSGA-II

Procedia PDF Downloads 43
27437 To Handle Data-Driven Software Development Projects Effectively

Authors: Shahnewaz Khan

Abstract:

Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.

Keywords: data, data-driven projects, data science, NLP, software project

Procedia PDF Downloads 83
27436 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 228
27435 Development of Lead-Bismuth Eutectic Sub-Channel Code Available for Wire Spacer

Authors: Qi Lu, Jian Deng, Daishun Huang, Chao Guo

Abstract:

The lead cooled fast reactor is considered as one of the most potential Generation IV nuclear systems due to the low working pressure, the appreciable neutron economy, and the considerable passive characteristics. Meanwhile, the lead bismuth eutectic (LBE) has the related advantages of lead with the weaker corrosiveness, which has been paid much attention by recent decades. Moreover, the sub-channel code is a necessary analysis tool for the reactor thermal-hydraulic design and safety analysis, which has been developed combined with the accumulation of LBE experimental data and the understanding of physical phenomena. In this study, a sub-channel code available for LBE was developed, and the corresponding geometric characterization method of typical sub-channels was described in detail, especially for for the fuel assembly with wire spacer. As for this sub-channel code, the transversal thermal conduction through gap was taken into account. In addition, the physical properties, the heat transfer model, the flow resistance model and the turbulent mixing model were analyzed. Finally, the thermal-hydraulic experiments of LBE conducted on THEADES (THErmal-hydraulics and Ads DESign) were selected as the evaluation data of this sub-channel code, including 19 rods with wire spacer, and the calculated results were in good agreement with the experimental results.

Keywords: lead bismuth eutectic, sub-channel code, wire spacer, transversal thermal conduction

Procedia PDF Downloads 131
27434 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training

Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu

Abstract:

Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.

Keywords: exponential value, facilitate learning, gender difference, virtual reality

Procedia PDF Downloads 94
27433 Production Line Layout Planning Based on Complexity Measurement

Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu

Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Keywords: production line, layout planning, complexity measurement, optimization, mass customization

Procedia PDF Downloads 393
27432 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System

Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang

Abstract:

In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: coefficient matching method, internal model control (IMC) scheme, PID controller cascaded filter, simplified decoupler

Procedia PDF Downloads 442
27431 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter

Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez

Abstract:

The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.

Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow

Procedia PDF Downloads 509
27430 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery

Authors: Payal Patel

Abstract:

Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.

Keywords: flyer, size optimization, textile, weight

Procedia PDF Downloads 215
27429 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model

Authors: Xiaobao Han, Huacong Li, Jia Li

Abstract:

For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.

Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator

Procedia PDF Downloads 399
27428 Assessment of Dose: Area Product of Common Radiographic Examinations in Selected Southern Nigerian Hospitals

Authors: Lateef Bamidele

Abstract:

Over the years, radiographic examinations are the most used diagnostic tools in the Nigerian health care system, but most diagnostic examinations carried out do not have records of patient doses. Lack of adequate information on patient doses has been a major hindrance in quantifying the radiological risk associated with radiographic examinations. This study aimed at estimating dose–area product (DAP) of patient examined in X-Ray units in selected hospitals in Southern Nigeria. The standard projections selected are chest posterior-anterior (PA), abdomen anterior-posterior (AP), pelvis AP, pelvis lateral (LAT), skull AP/PA, skull LAT, lumbar spine AP, lumbar spine, LAT. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDs were converted into DAP using the beam area of patients. The results show that the mean DAP ranged from 0.17 to 18.35 Gycm². The results obtained in this study when compared with those of NRPB-HPE were found to be higher. These are an indication of non optimization of operational conditions.

Keywords: dose–area product, radiographic examinations, patient doses, optimization

Procedia PDF Downloads 176
27427 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion

Authors: Andrey Khalov

Abstract:

The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.

Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER

Procedia PDF Downloads 16