Search results for: cognitive complexity metric
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3786

Search results for: cognitive complexity metric

1686 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 363
1685 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 72
1684 An Energy Efficient Spectrum Shaping Scheme for Substrate Integrated Waveguides Based on Spread Reshaping Code

Authors: Yu Zhao, Rainer Gruenheid, Gerhard Bauch

Abstract:

In the microwave and millimeter-wave transmission region, substrate-integrated waveguide (SIW) is a very promising candidate for the development of circuits and components. It facilitates the transmission at the data rates in excess of 200 Gbit/s. An SIW mimics a rectangular waveguide by approximating the closed sidewalls with a via fence. This structure suppresses the low frequency components and makes the channel of the SIW a bandpass or high pass filter. This channel characteristic impedes the conventional baseband transmission using non-return-to-zero (NRZ) pulse shaping scheme. Therefore, mixers are commonly proposed to be used as carrier modulator and demodulator in order to facilitate a passband transmission. However, carrier modulation is not an energy efficient solution, because modulation and demodulation at high frequencies consume a lot of energy. For the first time to our knowledge, this paper proposes a spectrum shaping scheme of low complexity for the channel of SIW, namely spread reshaping code. It aims at matching the spectrum of the transmit signal to the channel frequency response. It facilitates the transmission through the SIW channel while it avoids using carrier modulation. In some cases, it even does not need equalization. Simulations reveal a good performance of this scheme, such that, as a result, eye opening is achieved without any equalization or modulation for the respective transmission channels.

Keywords: bandpass channel, eye-opening, switching frequency, substrate-integrated waveguide, spectrum shaping scheme, spread reshaping code

Procedia PDF Downloads 161
1683 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: chromosomes, cropping, genetic algorithm, genes

Procedia PDF Downloads 428
1682 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain

Authors: Ganesh Dattatraya Saratale, Min Kyu Oh

Abstract:

Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.

Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation

Procedia PDF Downloads 540
1681 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 191
1680 GeoWeb at the Service of Household Waste Collection in Urban Areas

Authors: Abdessalam Hijab, Eric Henry, Hafida Boulekbache

Abstract:

The complexity of the city makes sustainable management of the urban environment more difficult. Managers are required to make significant human and technical investments, particularly in household waste collection (focus of our research). The aim of this communication is to propose a collaborative geographic multi-actor device (MGCD) based on the link between information and communication technologies (ICT) and geo-web tools in order to involve urban residents in household waste collection processes. Our method is based on a collaborative/motivational concept between the city and its residents. It is a geographic collaboration dedicated to the general public (citizens, residents, and any other participant), based on real-time allocation and geographic location of topological, geographic, and multimedia data in the form of local geo-alerts (location-specific problems) related to household waste in an urban environment. This contribution allows us to understand the extent to which residents can assist and contribute to the development of household waste collection processes for a better protected urban environment. This suggestion provides a good idea of how residents can contribute to the data bank for future uses. Moreover, it will contribute to the transformation of the population into a smart inhabitant as an essential component of a smart city. The proposed model will be tested in the Lamkansa sampling district in Casablanca, Morocco.

Keywords: information and communication technologies, ICTs, GeoWeb, geo-collaboration, city, inhabitant, waste, collection, environment

Procedia PDF Downloads 129
1679 The Torah Scroll of the National Library of the Kingdom of Morocco: Parchment Support and Black Ink Analytical Study

Authors: Oubelkacem Yacine, El Bast Hassan, El Bakkali Abdelmajid, Lamhasni Taibi, Ettakni Mahmoud, Ait Lyazidi Saadia, Haddad Mustapha, Ben-Ncer Abdelouahed, El Ferrane Mohammed, Boufarra Abdelkrim

Abstract:

The present work relates to an on-site and completely non-invasive investigation of one of the most famous west Mediterranean Torah Scroll housed at the National Library of the Kingdom of Morocco. The scroll is 26 m long and consists of 143 parchment sheets of 59 cm x 19 cm, exhibiting only black writings; it is of unknown age. The artifact has been restored by the curator staff of the library. The investigation exploring separately the parchment support and the writing black ink aims at: i) the examination of the parchment conservation/degradation state, ii) the identification of the black ink and iii) the identification of the parchment handcrafting materials. For this purpose, the analyses have been based on combining all of elemental XRF and structural Raman, ATR-FT Infrared Red and Fiber Optical Reflectance spectroscopies, in addition to chroma-metric and pH measurements. pH measurements showing values around 6.5 are in concordance with the absence of any visual corrosion related to the parchment acidity. However, on the basis of the relative intensities and frequency shift of amid I (AI) and amid II (AII) vibrational bands of the collagen, ATR-FTIR spectra revealed diffuse hydrolysis and gelatinization of the parchment writing support; diffuse and non-homogeny degradation by gelatinization has been also confirmed by the IG gelatinization index deduced from the NIR bands on the FOR spectra. This IG index, defined as the ratio I (6860 cm-1) / I (6685 cm-1), ranges in the interval 0.98 – 1 and highlights collagen degradation at the molecular level. Sequentially Shifted Excitation Raman measurements (SSERS) crossed to X-ray fluorescence (XRF) ones on the black writings revealed that the black ink used is an iron-copper gall one, while FOR spectra are typical of pure metal gall inks. These later reflectance measurements exclude, thus, any intentional addition of carbon black to the ink recipe. Moreover, no lead white had been used while pre-drawing the writing lines. On another side, ATR-FTIR measurements highlighted the presence of oxalates as ink degradation products. Considering the parchment handcrafting, the combination of XRF and ATR-FTIR measurements led to the assumption that this writing support had been prepared according to ancient Middle East practices; the parchment infrared fingerprint seems identical to that of the Dead Sea scroll. The present multi-technical analyses are the first ones performed on an ancient Judaic written parchment of Morocco; it is under furthering. The investigation will be extended to other parchments belonging to the Jewish Cultural Heritage Museum of Morocco in Casablanca.

Keywords: torah scroll, parchment, black ink, non-invasive analyses, XRF/ATR-FTIR/RAMAN/FORS

Procedia PDF Downloads 87
1678 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 168
1677 Technology Transfer and FDI: Some Lessons for Tunisia

Authors: Assaad Ghazouani, Hedia Teraoui

Abstract:

The purpose of this article is to try to see if the FDI actually contributes to technology transfer in Tunisia or are there other sources that can guarantee this transfer? The answer to this problem was gradual as we followed an approach using economic theory, the reality of Tunisia and econometric and statistical tools. We examined the relationship between technology transfer and FDI in Tunisia over a period of 40 years from 1970 to 2010. We estimated in two stages: first, a growth equation, then we have learned from this regression residue (proxy technology), secondly, we regressed on European FDI, exports of manufactures, imports of goods from the European Union in addition to other variables to test the robustness of the results and describing the level of infrastructure in the country. It follows from our study that technology transfer does not originate primarily and exclusively in the FDI and the latter is econometrically weakly with technology transfer and spill over effect of FDI does not seem to occur according to our results. However, the relationship between technology transfer and imports is negative and significant. Although this result is cons-intuitive, is recurrent in the literature of panel data. It has also given rise to intense debate on the microeconomic modelling as well as on the empirical applications. Technology transfer through trade or foreign investment has become a catalyst for growth recognized by numerous empirical studies in particular. However, the relationship technology transfer FDI is more complex than it appears. This complexity is due, primarily, but not exclusively to the close link between FDI and the characteristics of the host country. This is essentially the host's responsibility to establish general conditions, transparent and conducive to investment, and to strengthen human and institutional capacity necessary for foreign capital flows that can have real effects on growth.

Keywords: technology transfer, foreign direct investment, economics, finance

Procedia PDF Downloads 322
1676 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
1675 Advanced Combinatorial Method for Solving Complex Fault Trees

Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle

Abstract:

Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.

Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures

Procedia PDF Downloads 47
1674 Entrepreneurial Leadership in Malaysian Public University: Competency and Behavior in the Face of Institutional Adversity

Authors: Noorlizawati Abd Rahim, Zainai Mohamed, Zaidatun Tasir, Astuty Amrin, Haliyana Khalid, Nina Diana Nawi

Abstract:

Entrepreneurial leaders have been sought as in-demand talents to lead profit-driven organizations during turbulent and unprecedented times. However, research regarding the pertinence of their roles in the public sector has been limited. This paper examined the characteristics of the challenging experiences encountered by senior leaders in public universities that require them to embrace entrepreneurialism in their leadership. Through a focus group interview with five Malaysian university top senior leaders with experience being Vice-Chancellor, we explored and developed a framework of institutional adversity characteristics and exemplary entrepreneurial leadership competency in the face of adversity. Complexity of diverse stakeholders, multiplicity of academic disciplines, unfamiliarity to lead different and broader roles, leading new directions, and creating change in high velocity and uncertain environment are among the dimensions that characterise institutional adversities. Our findings revealed that learning agility, opportunity recognition capacity, and bridging capability are among the characteristics of entrepreneurial university leaders. The findings reinforced that the presence of specific attributes in institutional adversity and experiences in overcoming those challenges may contribute to the development of entrepreneurial leadership capabilities.

Keywords: bridging capability, entrepreneurial leadership, leadership development, learning agility, opportunity recognition, university leaders

Procedia PDF Downloads 111
1673 Introducing Thermodynamic Variables through Scientific Inquiry for Engineering Students

Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza

Abstract:

This work shows how the learning of physics is enriched with scientific inquiry practices, achieving learning that results in the use of higher-level cognitive skills. The activities, which were carried out with students of the 3rd semester of the courses of the Faculty of Sciences of the Engineering of the Austral University of Chile, focused on the understanding of the nature of the thermodynamic variables and how they relate to each other. This, through the analysis of atmospheric data obtained in the meteorological station Miraflores, located on the campus. The proposed activities consisted of the elaboration of time series, linear analysis of variables, as well as the analysis of frequencies and periods. From their results, the students reached conclusions associated with the nature of the thermodynamic variables studied and the relationships between them, to finally make public their results in a report using scientific writing standards. It is observed that introducing topics that are close to them, interesting and which affect their daily lives allows a better understanding of the subjects, which is reflected in higher levels of approval and motivation for the subject.

Keywords: basic sciences, inquiry-based learning, scientific inquiry, thermodynamics

Procedia PDF Downloads 259
1672 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes

Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng

Abstract:

To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.

Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation

Procedia PDF Downloads 59
1671 Learning Activities in Teaching Nihon-Go in the Philippines: Basis for a Proposed Action Plan

Authors: Esperanza C. Santos

Abstract:

Japanese Language was traditionally considered as a means of imparting culture and training aesthetic experience in students and therefore as something beyond the practical aims of language teaching and learning. Due to the complexity of foreign languages, lots of language learners and teachers shared deep reservations about the potentials of foreign language in enhancing the communication skills of the students. In spite of the arguments against the use of Foreign Language (Nihon-go) in the classroom, the researcher strongly support the use of Nihon-go in teaching communication skills as the researcher believes that Nihon-go is a valuable resource to be exploited in the classroom in order to help the students explore the language in an interesting and challenging way. The focus of this research is to find out the relationship between the preferences, opinions, and perceptions with the communication skills. This study also identifies the significance of the relationship between preferences, opinions and perceptions and communications skills in the activities employed in Foreign language (Nihon-go) among the junior and senior students in Foreign Language 2 at the Imus Institute, Imus Cavite during the academic year 2013-2014. The results of the study are expected to encourage further studies that particularly focused on the communication skills as brought about by the identified factors namely: preferences, opinions, and perceptions on the benefits factor namely the language acquisition; access to Japanese culture and students' interpretative ability. Therefore, this research is in its quest for the issues and concerns on how to effectively teach different learning activities in a Nihon-go class.

Keywords: preferences, opinions, perceptions, language acquisition

Procedia PDF Downloads 311
1670 Teaching Linguistic Humour Research Theories: Egyptian Higher Education EFL Literature Classes

Authors: O. F. Elkommos

Abstract:

“Humour studies” is an interdisciplinary research area that is relatively recent. It interests researchers from the disciplines of psychology, sociology, medicine, nursing, in the work place, gender studies, among others, and certainly teaching, language learning, linguistics, and literature. Linguistic theories of humour research are numerous; some of which are of interest to the present study. In spite of the fact that humour courses are now taught in universities around the world in the Egyptian context it is not included. The purpose of the present study is two-fold: to review the state of arts and to show how linguistic theories of humour can be possibly used as an art and craft of teaching and of learning in EFL literature classes. In the present study linguistic theories of humour were applied to selected literary texts to interpret humour as an intrinsic artistic communicative competence challenge. Humour in the area of linguistics was seen as a fifth component of communicative competence of the second language leaner. In literature it was studied as satire, irony, wit, or comedy. Linguistic theories of humour now describe its linguistic structure, mechanism, function, and linguistic deviance. Semantic Script Theory of Verbal Humor (SSTH), General Theory of Verbal Humor (GTVH), Audience Based Theory of Humor (ABTH), and their extensions and subcategories as well as the pragmatic perspective were employed in the analyses. This research analysed the linguistic semantic structure of humour, its mechanism, and how the audience reader (teacher or learner) becomes an interactive interpreter of the humour. This promotes humour competence together with the linguistic, social, cultural, and discourse communicative competence. Studying humour as part of the literary texts and the perception of its function in the work also brings its positive association in class for educational purposes. Humour is by default a provoking/laughter-generated device. Incongruity recognition, perception and resolving it, is a cognitive mastery. This cognitive process involves a humour experience that lightens up the classroom and the mind. It establishes connections necessary for the learning process. In this context the study examined selected narratives to exemplify the application of the theories. It is, therefore, recommended that the theories would be taught and applied to literary texts for a better understanding of the language. Students will then develop their language competence. Teachers in EFL/ESL classes will teach the theories, assist students apply them and interpret text and in the process will also use humour. This is thus easing students' acquisition of the second language, making the classroom an enjoyable, cheerful, self-assuring, and self-illuminating experience for both themselves and their students. It is further recommended that courses of humour research studies should become an integral part of higher education curricula in Egypt.

Keywords: ABTH, deviance, disjuncture, episodic, GTVH, humour competence, humour comprehension, humour in the classroom, humour in the literary texts, humour research linguistic theories, incongruity-resolution, isotopy-disjunction, jab line, longer text joke, narrative story line (macro-micro), punch line, six knowledge resource, SSTH, stacks, strands, teaching linguistics, teaching literature, TEFL, TESL

Procedia PDF Downloads 303
1669 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution

Procedia PDF Downloads 123
1668 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata

Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen

Abstract:

This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.

Keywords: composite, blending, optimization, lamination parameters

Procedia PDF Downloads 230
1667 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 237
1666 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 64
1665 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 32
1664 Digital Musical Organology: The Audio Games: The Question of “A-Musicological” Interfaces

Authors: Hervé Zénouda

Abstract:

This article seeks to shed light on an emerging creative field: "Audio games," at the crossroads between video games and computer music. Indeed, many applications, which propose entertaining audio-visual experiences with the objective of musical creation, are available today for different supports (game consoles, computers, cell phones). The originality of this field is the use of the gameplay of video games applied to music composition. Thus, composing music using interfaces but also cognitive logics that we qualify as "a-musicological" seem to us particularly interesting from the perspective of musical digital organology. This field raises questions about the representation of sound and musical structures and develops new instrumental gestures and strategies of musical composition. We will try in this article to define the characteristics of this field by highlighting some historical milestones (abstract cinema, game theory in music, actions, and graphic scores) as well as the novelties brought by digital technologies.

Keywords: audio-games, video games, computer generated music, gameplay, interactivity, synesthesia, sound interfaces, relationships image/sound, audiovisual music

Procedia PDF Downloads 114
1663 Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition

Authors: Ramonika Sengupta, Stuti Kachhwaha, Asha Adhiya, K. Satya Raja Sekhar, Rajwinder Kaur

Abstract:

Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions.

Keywords: chaotic carrier, fiber optic communication, Mach-Zehnder modulator, secure data transmission

Procedia PDF Downloads 273
1662 The Impact of Information Technology Monitoring on Employee Theft and Productivity

Authors: Ajayi Oluwasola Felix

Abstract:

This paper examines how firm investments in technology-based employee monitoring impact both misconduct and productivity. We use unique and detailed theft and sales data from 392 restaurant locations from five firms that adopt a theft monitoring information technology (IT) product. We use difference-in-differences (DD) models with staggered adoption dates to estimate the treatment effect of IT monitoring on theft and productivity. We find significant treatment effects in reduced theft and improved productivity that appear to be primarily driven by changed worker behavior rather than worker turnover. We examine four mechanisms that may drive this productivity result: economic and cognitive multitasking, fairness-based motivation, and perceived increases of general oversight. The observed productivity results represent substantial financial benefits to both firms and the legitimate tip-based earnings of workers. Our results suggest that employee misconduct is not solely a function of individual differences in ethics or morality, but can also be influenced by managerial policies that can benefit both firms and employees.

Keywords: information technology, monitoring, misconduct, employee theft

Procedia PDF Downloads 422
1661 UV-Vis Spectroscopy as a Tool for Online Tar Measurements in Wood Gasification Processes

Authors: Philip Edinger, Christian Ludwig

Abstract:

The formation and control of tars remain one of the major challenges in the implementation of biomass gasification technologies. Robust, on-line analytical methods are needed to investigate the fate of tar compounds when different measures for their reduction are applied. This work establishes an on-line UV-Vis method, based on a liquid quench sampling system, to monitor tar compounds in biomass gasification processes. Recorded spectra from the liquid phase were analyzed for their tar composition by means of a classical least squares (CLS) and partial least squares (PLS) approach. This allowed for the detection of UV-Vis active tar compounds with detection limits in the low part per million by volume (ppmV) region. The developed method was then applied to two case studies. The first involved a lab-scale reactor, intended to investigate the decomposition of a limited number of tar compounds across a catalyst. The second study involved a gas scrubber as part of a pilot scale wood gasification plant. Tar compound quantification results showed good agreement with off-line based reference methods (GC-FID) when the complexity of tar composition was limited. The two case studies show that the developed method can provide rapid, qualitative information on the tar composition for the purpose of process monitoring. In cases with a limited number of tar species, quantitative information about the individual tar compound concentrations provides an additional benefit of the analytical method.

Keywords: biomass gasification, on-line, tar, UV-Vis

Procedia PDF Downloads 259
1660 Emotional Intelligence: Strategies in the Sphere of Leadership

Authors: Raghavi Janaswamy, Srinivas Janaswamy

Abstract:

Emotional Intelligence (EI) measures the degree to which individuals can identify, understand and manage emotions. Indeed, it highlights the intricate relationship between thoughts, feelings, and behavior of an individual. In today's world, EI competencies appear to be more valuable compared to cognitive and/or technical expertise. Higher EI endows realistic confidence to perceive challenges with positive thinking and, in turn, offers a steady growth as well as the speed of work and discerning ability. It certainly plays a vital role for aspirants to ascend the organizational ladder and distinguishes outstanding leaders from the rest. Emotional maturity further reflects on the behavioral pattern toward dealing with self and the immediate environment. Indeed, it aids in cementing inter-personal relations at a workplace with a thorough understanding and certainly paves the way for leaders to their prosperity as well as organizational growth. Herein, EI contributions to an individual, team, and organizational success are discussed with an emphasis on the required tools to acquire higher EI traits. The strategies for promoting self-awareness, empathy, and social skills and changing trends of the new programs for the EI improvement are also highlighted.

Keywords: emotional intelligence, leadership, organizational growth, self-awareness skills

Procedia PDF Downloads 83
1659 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor

Authors: Feng Tao, Han Ye, Shaoyi Liao

Abstract:

City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.

Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI

Procedia PDF Downloads 303
1658 Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer

Authors: Noora Al Muftah, Reda Rawi, Richard Thompson, Halima Bensmail

Abstract:

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

Keywords: cancer, gene network, Lasso, penalized regression, P-values, unbiased estimator

Procedia PDF Downloads 410
1657 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 225