Search results for: high voltage education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25871

Search results for: high voltage education

4901 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 128
4900 Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application

Authors: Chia-Chia Chang, Jhen-Ting Huang, Hu-Cheng Weng, An-Ya Lo

Abstract:

This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode.

Keywords: hierarchical porous carbon, cerium oxide, supercapacitor

Procedia PDF Downloads 103
4899 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete

Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello

Abstract:

The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.

Keywords: concrete, pine wood ash, pozzolanic activity, X-ray

Procedia PDF Downloads 431
4898 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties

Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino

Abstract:

Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.

Keywords: agro-industrial wastewater, broccoli, long-term re-use, tomato

Procedia PDF Downloads 349
4897 Lipase-Catalyzed Synthesis of Novel Nutraceutical Structured Lipids in Non-Conventional Media

Authors: Selim Kermasha

Abstract:

A process for the synthesis of structured lipids (SLs) by the lipase-catalyzed interesterification of selected endogenous edible oils such as flaxseed oil (FO) and medium-chain triacylglyceols such as tricaprylin (TC) in non-conventional media (NCM), including organic solvent media (OSM) and solvent-free medium (SFM), was developed. The bioconversion yield of the medium-long-medium-type SLs (MLM-SLs were monitored as the responses with use of selected commercial lipases. In order to optimize the interesterification reaction and to establish a model system, a wide range of reaction parameters, including TC to FO molar ratio, reaction temperature, enzyme concentration, reaction time, agitation speed and initial water activity, were investigated to establish the a model system. The model system was monitored with the use of multiple response surface methodology (RSM) was used to obtain significant models for the responses and to optimize the interesterification reaction, on the basis of selected levels and variable fractional factorial design (FFD) with centre points. Based on the objective of each response, the appropriate level combination of the process parameters and the solutions that met the defined criteria were also provided by means of desirability function. The synthesized novel molecules were structurally characterized, using silver-ion reversed-phase high-performance liquid chromatography (RP-HPLC) atmospheric pressure chemical ionization-mass spectrophotometry (APCI-MS) analyses. The overall experimental findings confirmed the formation of dicaprylyl-linolenyl glycerol, dicaprylyl-oleyl glycerol and dicaprylyl-linoleyl glycerol resulted from the lipase-catalyzed interesterification of FO and TC.

Keywords: enzymatic interesterification, non-conventinal media, nutraceuticals, structured lipids

Procedia PDF Downloads 278
4896 Hemodialysis Technique in a Diabetic Population

Authors: Daniel Thompson, Sophie Cerutti, Muhammad Peerbux, Hansraj Bookun

Abstract:

Introduction: Diabetic nephropathy is the leading cause end stage renal failure in Australia, responsible for 36% of cases. Patients who require dialysis may be suitable for haemodialysis through an arteriovenous fistula (AVF), and preoperatively careful planning is required to select suitable vessels for a long-lasting fistula that provides suitable dialysis access. Due to high levels of vascular disease in diabetic patients, we sought to investigate whether there is a difference in the types of autologous AVFs created for diabetic patients in renal failure compared to their non-diabetic counterparts. Method: Data was collected from the Australasian Vascular Audit, for all vascular surgery completed at St. Vincent’s Hospital Melbourne between 2011-2020. Patients were selected by operative type, creation of AVF, and compared in two groups, diabetic patients and patients without diabetes. Chi-squared test was utilised to determine significance. Results: Data analysis is ongoing and will be complete with updated abstract in time for the conference. Discussion: Diabetic nephropathy is the cause for roughly a third of end stage renal failure in Australia. Diabetic patients present with a unique set of challenges when it comes to dialysis access due to increased risk of peripheral vascular disease and arterial calcification. Care must be taken in the creation of fistulas to minimise complications and increase the chance of long-lasting access. Our study investigates the difference in autologous AVFs between diabetics and non-diabetics, and results may be used to influence location of fistula creation. Further research may be used to investigate patency rates of fistulas in diabetics vs non-diabetics which would further influence treatment decisions.

Keywords: dialysis, diabetes, renal access, fistula

Procedia PDF Downloads 110
4895 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior

Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release

Procedia PDF Downloads 184
4894 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 293
4893 Trends in Use of Millings in Pavement Maintenance

Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain

Abstract:

While milling materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8" to 1" and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.

Keywords: chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings

Procedia PDF Downloads 317
4892 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation

Procedia PDF Downloads 309
4891 Analyzing the Climate Change Impact and Farmer's Adaptability Strategies in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Sonia

Abstract:

The agriculture sector is deemed more vulnerable to climate change as its variation can directly affect the crop’s productivity, but farmers’ adaptation strategies play a vital role in climate change-agriculture relationship. Therefore, this research has been undertaken to assess the Climate Change impact on wheat productivity and farmers’ adaptability strategies in Khyber Pakhtunkhwa province, Pakistan. The panel dataset was analyzed to gauge the impact of changing climate variables (i.e., temperature, rainfall, and humidity) on wheat productivity from 1985 to 2015. Amid the study period, the fixed effect estimates confirmed an inverse relationship of temperature and rainfall on the wheat yield. The impact of temperature is observed to be detrimental as compared to the rainfall, causing 0.07 units reduction in the production of wheat with 1C upsurge in temperature. On the flip side, humidity revealed a positive association with the wheat productivity by confirming that high humidity could be beneficial to the production of the crop over time. Thus, this study ensures significant nexus between agricultural production and climatic parameters. However, the farming community in the underlying study area has limited knowledge about the adaptation strategies to lessen the detrimental impact of changing climate on crop yield. It is recommended that farmers should be well equipped with training and advanced agricultural management practices under the realm of climate change. Moreover, innovative technologies pertinent to the agriculture system should be encouraged to handle the challenges arising due to variations in climate factors.

Keywords: climate change, fixed effect model, panel data, wheat productivity

Procedia PDF Downloads 98
4890 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines

Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya

Abstract:

Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.

Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry

Procedia PDF Downloads 294
4889 The Relationship Between Teachers’ Attachment Insecurity and Their Classroom Management Efficacy

Authors: Amber Hatch, Eric Wright, Feihong Wang

Abstract:

Research suggests that attachment in close relationships affects one’s emotional processes, mindfulness, conflict-management behaviors, and interpersonal interactions. Attachment insecurity is often associated with maladaptive social interactions and suboptimal relationship qualities. Past studies have considered how the nature of emotion regulation and mindfulness in teachers may be related to student or classroom outcomes. Still, no research has examined how the relationship between such internal experiences and classroom management outcomes may also be related to teachers’ attachment insecurity. This study examined the interrelationships between teachers’ attachment insecurity, mindfulness tendencies, emotion regulation abilities, and classroom management efficacy as indexed by students’ classroom behavior and teachers’ response effectiveness. Teachers’ attachment insecurity was evaluated using the global ECRS-SF, which measures both attachment anxiety and avoidance. The present study includes a convenient sample of 357 American elementary school teachers who responded to a survey regarding their classroom management efficacy, attachment in/security, dispositional mindfulness, emotion regulation strategies, and difficulties in emotion regulation, primarily assessed via pre-existing instruments. Good construct validity was demonstrated for all scales used in the survey. Sample demographics, including gender (94% female), race (92% White), age (M = 41.9 yrs.), years of teaching experience (M = 15.2 yrs.), and education level were similar to the population from which it was drawn, (i.e., American elementary school teachers). However, white women were slightly overrepresented in our sample. Correlational results suggest that teacher attachment insecurity is associated with poorer classroom management efficacy as indexed by students’ disruptive behavior and teachers’ response effectiveness. Attachment anxiety was a much stronger predictor of adverse student behaviors and ineffective teacher responses to adverse behaviors than attachment avoidance. Mindfulness, emotion regulation abilities, and years of teaching experience predicted positive classroom management outcomes. Attachment insecurity and mindfulness were more strongly related to frequent adverse student behaviors, while emotion regulation abilities were more strongly related to teachers’ response effectiveness. The teaching experience was negatively related to attachment insecurity and positively related to mindfulness and emotion regulation abilities. Although the data were cross-sectional, path analyses revealed that attachment insecurity is directly related to classroom management efficacy. Through two routes, this relationship is further mediated by emotion regulation and mindfulness in teachers. The first route of indirect effect suggests double mediation by teacher’s emotion regulation and then teacher mindfulness in the relationship between teacher attachment insecurity and classroom management efficacy. The second indirect effect suggests mindfulness directly mediated the relationship between attachment insecurity and classroom management efficacy, resulting in improved model fit statistics. However, this indirect effect is much smaller than the double mediation route through emotion regulation and mindfulness in teachers. Given the significant predication of teacher attachment insecurity, mindfulness, and emotion regulation on teachers’ classroom management efficacy both directly and indirectly, the authors recommend improving teachers’ classroom management efficacy via a three-pronged approach aiming at enhancing teachers’ secure attachment and supporting their learning adaptive emotion regulation strategies and mindfulness techniques.

Keywords: Classroom management efficacy, student behavior, teacher attachment, teacher emotion regulation, teacher mindfulness

Procedia PDF Downloads 64
4888 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx

Authors: Yao Song

Abstract:

Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.

Keywords: GZSCC, OCSCC, OPSCC, HPV

Procedia PDF Downloads 54
4887 Students’ Post COVID-19 Experiences with E-Learning Platforms among Undergraduate Students of Public Universities in the Ashanti Region, Ghana

Authors: Michael Oppong, Stephanie Owusu Ansah, Daniel Ofori

Abstract:

The study investigated students’ post-covid-19 experiences with e-learning platforms among undergraduate students of public universities in the Ashanti region of Ghana. The study respectively drew 289 respondents from two public universities, i.e., Kwame Nkrumah University of Science and Technology (KNUST) Business School and the Kumasi Technical University (KsTU) Business School in Ghana. Given that the population from the two public universities was fairly high, sampling had to be done. The overall population of the study was 480 students randomly sampled from the two public universities using the sampling ratio given by Alreck and Settle (2004). The population constituted 360 students from the Kwame Nkrumah University of Science and Technology (KNUST) Business School and 120 from the Kumasi Technical University Business School (KsTU). The study employed questionnaires as a data collection tool. The data gathered were 289 responses out of 480 questionnaires administered, representing 60.2%. The data was analyzed using pie charts, bar charts, percentages, and line graphs. Findings revealed that the e-learning platforms were still useful. However, the students used it on a weekly basis post-COVID-19, unlike in the COVID-19 era, where it was used daily. All other academic activities, with the exception of examinations, are still undertaken on the e-learning platforms; however, it is underutilized in the post-COVID-19 experience. The study recommends that universities should invest in infrastructure development to enable all academic activities, most especially examinations, to be undertaken using the e-learning platforms to curtail future challenges.

Keywords: e-learning platform, undergraduate students, post-COVID-19 experience, public universities

Procedia PDF Downloads 75
4886 Diverse Sensitivity to Ultraviolet Radiation of DNA and RNA Viruses

Authors: Nickolay Nosik, Dmitry Nosik, Marina Bochkova, Nina Kondrashina, Olga Lobach

Abstract:

The bactericidal effect of UV radiation is known for long time and widely used for inactivation of pathogens but for viruses it is not so uniform. Due to a wide variety of viruses their sensitivity to UV radiation is quite different and not quite predictable. The goal of the study was to determine the inactivation kinetics of UV radiation ( 254 nm) of the viruses of social importance (HIV), as well as test-viruses (poliovirus, adenovirus) used for the evaluation of the viral inactivation efficacy of germicides. Methods: DNA viruses- adenovirus, type 5; Herpes simplex virus (HSV), type 1, and RNA viruses–human immunodeficiency virus (HIV), type 1 and poliovirus, type 1 (Sabin strain) were obtained from State collection of viruses ( The D.I. Ivanovsky Institute of Virology). The source of UV radiation was a 15-watt low-pressure mercury vapor lamp (over 60% 254nm). The samples of 5cm2 were placed direct under the UV lamp flow (h-0.3m). Log reduction value was used as a marker for the rate of virus inactivation. Results: The data obtained indicate that poliovirus (one of the viruses most resistant to chemical germicides) and HSV are rather sensitive to UV radiation ( D90 =250-311 J/m2). Adenovirus is much more resistant to UV radiation (750 J/m2 ). The kinetics of adenovirus inactivation : 0 min- 5.0 lg TCID50, 10 min - 5,0, 15 min -4,0, 30 min – 3.5, 60 min – 1,0, 75 min -0,5 lg TCID50, 90 min –virus not detectable. HIV is most resistant to UV radiation among the studied viruses. It takes more than 4 hrs to inactivate the virus on the surface. D90 = 2000 J/m2 Conclusion: The results of the study show that there is no direct dependence between sensitivity to UV light and the size of the virion or presence\absence of the envelope of the virus. Poliovirus and adenovirus are small viruses (20-30nm poliovirus and 70-90nm adenovirus) and both are non-enveloped viruses but adenovirus 3-fold more resistant to UV radiation than poliovirus. It can be expected that viruses with more complicate structure, like Herpes virus (200nm) or HIV (80-100 nm), would be more sensitive to UV light. However, the very high resistance of HIV to UV radiation needs further investigation. The diverse resistance of the different viruses to UV radiation should be taken into the account when UV light is used to inactivate infectious viruses in hospitals and other public environments.

Keywords: HIV, HSV, inhibition of viruses, UV radiation

Procedia PDF Downloads 425
4885 Metabolic and Phylogenetic Profiling of Rhizobium leguminosarum Strains Isolated from NZ Soils of Varying pH

Authors: Anish Shah, Steve A. Wakelin, Derrick Moot, Aurélie Laugraud, Hayley J. Ridgway

Abstract:

A mixed pasture system of ryegrass-clover is used in New Zealand, where clovers are generally inoculated with commercially available strains of rhizobia. The community of rhizobia living in the soil and the way in which they interact with the plant are affected by different biotic and abiotic factors. In general, bacterial richness and diversity in soil varies by soil pH. pH also affects cell physiology and acts as a master variable that controls the wider soil physiochemical conditions such as P availability, Al release and micronutrient availability. As such, pH can have both primary and secondary effects on soil biology and processes. The aim of this work was to investigate the effect of soil pH on the genetic diversity and metabolic profile of Rhizobium leguminosarum strains nodulating clover. Soils were collected from 12 farms across New Zealand which had a pH(water) range of between 4.9 and 7.5, with four acidic (pH 4.9 – 5.5), four ‘neutral’ (5.8 – 6.1) and four alkaline (6.5 – 7.5) soils. Bacteria were recovered from nodules of Trifolium repens (white clover) and T. subterraneum (subterranean clover) grown in the soils. The strains were cultured and screened against a range of pH-amended media to demonstrate whether they were adapted to pH levels similar to their native soils. The strains which showed high relative growth at a given pH (~20% of those isolated) were selected for metabolic and taxonomic profiling. The Omnilog (Biolog Inc., Hayward, CA) phenotype array was used to perform assays on carbon (C) utilisation for selected strains. DNA was extracted from the strains which had differing C utilisation profiles and PCR products for both forward and reverse primers were sequenced for the following genes: 16S rRNA, recA, nodC, nodD and nifH (symbiotic).

Keywords: bacterial diversity, clover, metabolic and taxonomic profiling, pH adaptation, rhizobia

Procedia PDF Downloads 229
4884 Diagnostic and Prognostic Use of Kinetics of Microrna and Cardiac Biomarker in Acute Myocardial Infarction

Authors: V. Kuzhandai Velu, R. Ramesh

Abstract:

Background and objectives: Acute myocardial infarction (AMI) is the most common cause of mortality and morbidity. Over the last decade, microRNAs (miRs) have emerged as a potential marker for detecting AMI. The current study evaluates the kinetics and importance of miRs in the differential diagnosis of ST-segment elevated MI (STEMI) and non-STEMI (NSTEMI) and its correlation to conventional biomarkers and to predict the immediate outcome of AMI for arrhythmias and left ventricular (LV) dysfunction. Materials and Method: A total of 100 AMI patients were recruited for the study. Routine cardiac biomarker and miRNA levels were measured during diagnosis and serially at admission, 6, 12, 24, and 72hrs. The baseline biochemical parameters were analyzed. The expression of miRs was compared between STEMI and NSTEMI at different time intervals. Diagnostic utility of miR-1, miR-133, miR-208, and miR-499 levels were analyzed by using RT-PCR and with various diagnostics statistical tools like ROC, odds ratio, and likelihood ratio. Results: The miR-1, miR-133, and miR-499 showed peak concentration at 6 hours, whereas miR-208 showed high significant differences at all time intervals. miR-133 demonstrated the maximum area under the curve at different time intervals in the differential diagnosis of STEMI and NSTEMI which was followed by miR-499 and miR-208. Evaluation of miRs for predicting arrhythmia and LV dysfunction using admission sample demonstrated that miR-1 (OR = 8.64; LR = 1.76) and miR-208 (OR = 26.25; LR = 5.96) showed maximum odds ratio and likelihood respectively. Conclusion: Circulating miRNA showed a highly significant difference between STEMI and NSTEMI in AMI patients. The peak was much earlier than the conventional biomarkers. miR-133, miR-208, and miR-499 can be used in the differential diagnosis of STEMI and NSTEMI, whereas miR-1 and miR-208 could be used in the prediction of arrhythmia and LV dysfunction, respectively.

Keywords: myocardial infarction, cardiac biomarkers, microRNA, arrhythmia, left ventricular dysfunction

Procedia PDF Downloads 107
4883 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 70
4882 Association of Antibiotics Resistance with Efflux Pumps Genes among Multidrug-Resistant Klebsiella pneumonia Recovered from Hospital Waste Water Effluents in Eastern Cape, South Africa

Authors: Okafor Joan, Nwodo Uchechukwu

Abstract:

Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen responsible for opportunistic and nosocomial infection. One of the most significant antibiotic resistance mechanisms in K. pneumoniae isolates is efflux pumps. Our current study identified efflux genes (AcrAB, OqxAB, MacAB, and TolC) and regulatory genes (RamR and RarA) in multidrug-resistant (MDR) K. pneumoniae isolated from hospital effluents and investigated their relationship with antibiotic resistance. The sum of 145 K. pneumoniae isolates was established by PCR and screened for antibiotic susceptibility. PCR detected efflux pump genes, and their link with antibiotic resistance was statistically examined. However, 120 (83%) of the confirmed isolated were multidrug-resistant, with the largest percentage of resistance to ampicillin (88.3%) and the weakest rate of resistance to imipenem (5.5%). Resistance to the other antibiotics ranged from 11% to 76.6%. Molecular distribution tests show that AcrA, AcrB, MacA, oqxB oqxA, TolC, MacB were detected in 96.7%, 85%, 76.7%, 70.8%, 55.8%, 39.1%, and 29.1% respectively. However, 14.3% of the isolates harboured all seven genes screened. Efflux pump system AcrAB (83.2%) was the most commonly detected in K. pneumonia isolated across all the antibiotics class-tested. In addition, the frequencies of RamR and RarA were 46.2% and 31.4%, respectively. AcrAB and OqxAB efflux pump genes were significantly associated with fluoroquinolone, beta-lactam, carbapenem, and tetracycline resistance (p<0.05). The high rate of efflux genes in this study demonstrated that this resistance mechanism is the dominant way in K. pneumoniae isolates. Appropriate treatment must be used to reduce and tackle the burden of resistant Klebsiella pneumonia in hospital wastewater effluents.

Keywords: Klebsiella pneumonia, efflux pumps, regulatory genes, multidrug-resistant, hospital, PCR

Procedia PDF Downloads 61
4881 Detection and Quantification of Ochratoxin A in Food by Aptasensor

Authors: Moez Elsaadani, Noel Durand, Brice Sorli, Didier Montet

Abstract:

Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators.

Keywords: aptamer, aptasensor, detection, Ochratoxin A

Procedia PDF Downloads 151
4880 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta

Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati

Abstract:

DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.

Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta

Procedia PDF Downloads 139
4879 Mobulid Ray Post-Release Mortality to Assess the Feasibility of Live-Release Management Measures

Authors: Sila K. Sari, Betty J.L. Laglbauer, Muhammad G. Salim, Irianies C. Gozali, Iqbal Herwata, Fahmi Fahmi, Selvia Oktaviyani, Isabel Ender, Sarah Lewis, Abraham Sianipar, Mark Erdmann

Abstract:

Taking strides towards the sustainable use of marine stocks requires science-based management of target fish populations and reduction of bycatch in non-selective fisheries. Among elasmobranchs, mobulid rays are faced with high extinction risk due to intrinsic vulnerability to fishing and their conservation has been recognized as a strong priority both in Indonesia and worldwide. Despite their common vulnerabilities to fishing pressure due to slow growth, late maturation and low fecundity, only manta rays, but not devil rays, are protected in Indonesian waters. However, both manta and devil rays are captured in non-selective fisheries, in particular drift gillnets, since their habitat overlaps with fishing grounds for primary target species (e.g. marlin, swordfish and bullet tuna off the coast of Muncar). For this reason, mobulid populations are being heavily impacted, and while national-level protections are crucial to help conservation, they may not suffice alone to insure populations sustainability. In order to assess the potential of applying live-release management measures to conserve mobulids captured as bycatch in drift gillnets, we deployed pop-up survival archival transmitters to assess post-release mortality in Indonesian mobulid rays. We also assessed which fishing practices, in particular, soak duration, affected post-release mortality in order to draw relevant conclusions for management.

Keywords: Mobulid, Devil ray, Manta ray, Bycatch

Procedia PDF Downloads 141
4878 An Empirical Investigation on the Dynamics of Knowledge and IT Industries in Korea

Authors: Sang Ho Lee, Tae Heon Moon, Youn Taik Leem, Kwang Woo Nam

Abstract:

Knowledge and IT inputs to other industrial production have become more important as a key factor for the competitiveness of national and regional economies, such as knowledge economies in smart cities. Knowledge and IT industries lead the industrial innovation and technical (r)evolution through low cost, high efficiency in production, and by creating a new value chain and new production path chains, which is referred as knowledge and IT dynamics. This study aims to investigate the knowledge and IT dynamics in Korea, which are analyzed through the input-output model and structural path analysis. Twenty-eight industries were reclassified into seven categories; Agriculture and Mining, IT manufacture, Non-IT manufacture, Construction, IT-service, Knowledge service, Non-knowledge service to take close look at the knowledge and IT dynamics. Knowledge and IT dynamics were analyzed through the change of input output coefficient and multiplier indices in terms of technical innovation, as well as the changes of the structural paths of the knowledge and IT to other industries in terms of new production value creation from 1985 and 2010. The structural paths of knowledge and IT explain not only that IT foster the generation, circulation and use of knowledge through IT industries and IT-based service, but also that knowledge encourages IT use through creating, sharing and managing knowledge. As a result, this paper found the empirical investigation on the knowledge and IT dynamics of the Korean economy. Knowledge and IT has played an important role regarding the inter-industrial transactional input for production, as well as new industrial creation. The birth of the input-output production path has mostly originated from the knowledge and IT industries, while the death of the input-output production path took place in the traditional industries from 1985 and 2010. The Korean economy has been in transition to a knowledge economy in the Smart City.

Keywords: knowledge and IT industries, input-output model, structural path analysis, dynamics of knowledge and it, knowledge economy, knowledge city and smart city

Procedia PDF Downloads 307
4877 The Plant Hormone Auxin Impacts the Profile of Aroma Compounds in Tomato Fruits (Solanum lycopersicum)

Authors: Vanessa Caroline De Barros Bonato, Bruna Lima Gomes, Luciano Freschi, Eduardo Purgatto

Abstract:

The plant hormone ethylene is closely related to the metabolic changes that occur during fruit ripening, including volatile biosynthesis. Although knowledge about the biochemistry pathways that produce flavor compounds and the importance of ethylene to these processes are extensively covered, little is known about the regulation mechanisms. In addition, growing body of evidences indicates that auxin is also involved in controlling ripening. However, there is scarce information about the involvement of auxin in fruit volatile production. This study aimed to assess auxin-ethylene interactions and its influence on tomato fruit volatile profile. Fruits from tomato cultivar Micro-Tom were treated with IAA and ethylene, separately and in combination. The hormonal treatment was performed by injection (IAA) or gas exposure (ethylene) and the volatiles were extracted by Solid Phase Microextraction (SPME) and analyzed by GC-MS. Ethylene levels and color were measured by gas chromatography and colorimetry, respectively. The results indicate that the treatment with IAA (even in the presence of high concentrations of exogenous ethylene), impacted the profile of volatile compounds derived from fatty acids, amino acids, carbohydrates and isoprenoids. Ethylene is a well-known regulator of the transition from green to red color and also is implicated in the biosynthesis of characteristic volatile compounds of tomato fruit. The effects observed suggest the existence of a crosstalk between IAA and ethylene in the aroma volatile formation in the fruit. A possible interference of IAA in the ethylene sensitivity in the fruit flesh is discussed. The data suggest that auxin plays an important role in the volatile synthesis in the tomato fruit and introduce a new level of complexity in the regulation of the fruit aroma formation during ripening.

Keywords: aroma compounds, fruit ripening, fruit quality, phytohormones

Procedia PDF Downloads 374
4876 Optimum Dewatering Network Design Using Firefly Optimization Algorithm

Authors: S. M. Javad Davoodi, Mojtaba Shourian

Abstract:

Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.

Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm

Procedia PDF Downloads 269
4875 Awareness and Willingness of Signing 'Consent Form in Palliative Care' in Elderly Patients with End Stage Renal Disease

Authors: Hsueh Ping Peng

Abstract:

End-stage renal disease most commonly occurs in the elderly population. Elderly people are approaching the end of their lives, and when facing major life-threatening situations, apart from aggressive medical treatment, they can also choose treatment methods such as hospice care to improve their quality of life. The purpose of this study was to investigate factors associated with the awareness and willingness to sign hospice and palliative care consent forms in elderly with end-stage renal disease. This study used both quantitative, cross-sectional study designs. In the quantitative section, 110 elderly patients (aged 65 or above) with end-stage renal disease receiving conventional hemodialysis were recruited as study participants from a medical center in Taipei City. Data were collected using structured questionnaires. Study tools included basic demographic data, questionnaires on the awareness and perception of hospice and palliative care, etc. After collecting the data, data analysis was conducted using SPSS 20.0 statistical software, including descriptive statistics, chi-square test, logistic regression, and other inferential statistics. The results showed that the average age of participants was 71.6 years old, more males than females, average years of dialysis was 6.1 years and most subjects rated their self-perceived health status as fair. Results of the study are summarized as follows: Elderly people with end-stage renal disease did not have sufficient knowledge and awareness about hospice and palliative care. Influencing factors included level of education, marital status, years of dialysis and age, etc. Demographic factors influencing the signing of consent forms included gender, marital status, and age, which all showed significant impacts. Factors taken into consideration when signing consent forms included awareness of hospice care, understanding the relevant definitions of hospice care, and understanding that consent may be modified or cancelled at any time; it was predicted that people who knew more about ways to receive hospice care or more related definitions were more willing to sign the consent forms. In the qualitative study section, 10 participants who signed the consent form, five male, and 5 female, between the ages of 65-90, have completed the semi-structured interviews. Analysis of the interviews revealed six themes: (1) passing away peacefully, (2) autonomy on arrangements of life and death, (3) unwillingness to increase family and social burden, (4) friends and relatives’ experience influencing the decision to give consent, (5) sharing information to facilitate the giving of consent, (6) facing each day with ease, to reflect the experience and factors of consideration for elderly with end-stage renal disease when signing consent forms. The results of this study provides the awareness, thoughts and feelings of elderly with end-stage renal disease on signing consent forms, and serve as a future reference for the dialysis unit to enhance the promotion of hospice and palliative care and related caregiving measures, thereby improving the quality of life and care for elderly people with end-stage renal disease.

Keywords: end-stage renal disease, hemodialysis, hospice and palliative care, awareness, willingness

Procedia PDF Downloads 142
4874 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics

Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali

Abstract:

Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.

Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic

Procedia PDF Downloads 174
4873 Simulating Human Behavior in (Un)Built Environments: Using an Actor Profiling Method

Authors: Hadas Sopher, Davide Schaumann, Yehuda E. Kalay

Abstract:

This paper addresses the shortcomings of architectural computation tools in representing human behavior in built environments, prior to construction and occupancy of those environments. Evaluating whether a design fits the needs of its future users is currently done solely post construction, or is based on the knowledge and intuition of the designer. This issue is of high importance when designing complex buildings such as hospitals, where the quality of treatment as well as patient and staff satisfaction are of major concern. Existing computational pre-occupancy human behavior evaluation methods are geared mainly to test ergonomic issues, such as wheelchair accessibility, emergency egress, etc. As such, they rely on Agent Based Modeling (ABM) techniques, which emphasize the individual user. Yet we know that most human activities are social, and involve a number of actors working together, which ABM methods cannot handle. Therefore, we present an event-based model that manages the interaction between multiple Actors, Spaces, and Activities, to describe dynamically how people use spaces. This approach requires expanding the computational representation of Actors beyond their physical description, to include psychological, social, cultural, and other parameters. The model presented in this paper includes cognitive abilities and rules that describe the response of actors to their physical and social surroundings, based on the actors’ internal status. The model has been applied in a simulation of hospital wards, and showed adaptability to a wide variety of situated behaviors and interactions.

Keywords: agent based modeling, architectural design evaluation, event modeling, human behavior simulation, spatial cognition

Procedia PDF Downloads 235
4872 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: political tendency, prediction, sentiment analysis, Twitter

Procedia PDF Downloads 211