Search results for: thermal system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20306

Search results for: thermal system

18236 Urgency of Islamic Economic System Implementation in Indonesian Banking

Authors: Muhammad Rifqi Hafizhudin Arif, Mukhamad Zulfal Faradis, Ahmad Hidayatullah

Abstract:

Indonesia is the country that uses conventional financial system adopted from European countries as a form of finance in the national banking system. Many of the derivative products of conventional banks either investment, buy and sell, saving and loan, which is not in accordance with Islamic Ethics. While the majority population in Indonesia are belief in Islam, which Islam has had financial management guide is written in the Quran, the Hadith, as well as the opinions of experts who strongly prohibits the use of interest in each transaction activities. Many different expert opinions on the application of the Islamic financial system in Indonesia. However, as the majority of the population of Indonesia, Islamic community have not been able to get the opportunities to choose the Islamic financial system that has mutual benefit between consumers and banks, particularly fairness in transactions, ethical investment, uphold the values of solidarity and brotherhood in every transaction activities, and avoid speculation. In this paper, we will discuss the reasons for the importance of providing an option for Islamic community as the majority of the population of Indonesia to use the banking system which adopted the Islamic ethical values that have been much discussed by other researchers in various countries. The existence of this research is expected to Government, academia and the general public aware of the urgency of Islamic economic system implementation in Indonesian banking as the solution and justice especially for the Islamic community to use the values which they held.

Keywords: Islamic economic system, conventional system, Islamic value, banking

Procedia PDF Downloads 367
18235 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain

Authors: M. Rashid Hussain, Shady S. Refaat

Abstract:

The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.

Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation

Procedia PDF Downloads 164
18234 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval-undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy

Procedia PDF Downloads 307
18233 Pension Reform in Georgia: Challenges, International Practice and Opportunities for Development

Authors: Manana Lobzhanidze

Abstract:

Reforming the pension system is urgent in Georgia due to socio-economic problems. Replacing the current pension system with a new one requires, on the one hand, an assessment of the challenges in this field and, on the other hand, a study of the best practices of foreign experience. Objectives: The aim of the research is to identify challenges in the pension reform process in Georgia, to study international experience, and to develop recommendations for the implementation of an effective pension system. Methodologies: A desk study was conducted, and methods of analysis, comparison, grouping, matrix charts, and scenario analysis were used. Findings: The advantages of accumulative pension compared to the current pension system are identified. The main challenge is the non-targeting of the pension contributions and the ineffective investment policy; the public's attitude towards the cumulative pension system is determined.

Keywords: pension reform, challenges, international practice, opportunity for development

Procedia PDF Downloads 72
18232 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 93
18231 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 76
18230 Energy Efficient Alternate Hydraulic System Called TejHydroLift

Authors: Tejinder Singh

Abstract:

This paper describes a new more efficient Hydraulic System which uses lesser work to produce more output. Conventional Hydraulic System like Hydraulic Lifts and Rams use lots of water to be pumped to produce output. TejHydroLift will do the equal amount of force with lesser input of water. The paper will show that force applied can be increased manifold without requiring to move smaller force by more distance which used to be required in Conventional Hydraulic Lifts. The paper describes one of the configurations of TejHydroLift System called “Slim Antenna TejHydroLift Configuration”. The TejHydroLift uses lesser water and hence demands lesser work to be performed to move the same load.

Keywords: alternate, hydraulic system, efficient, TejHydroLift

Procedia PDF Downloads 263
18229 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy

Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.

Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model

Procedia PDF Downloads 174
18228 Characteristics of the Rocks Glacier Deposits in the Southern Carpathians, Romania

Authors: Petru Urdea

Abstract:

As a distinct part of the mountain system, the rock glacier system is a particularly periglacial debris system. Being an open system, it works in a manner of interconnection with others subsystems like glacial, cliffs, rocky slopes sand talus slope subsystems, which are sources of sediments. One characteristic is that for long periods of time it is like a storage unit for debris, and ice, and temporary for snow and water. In the Southern Carpathians 306 rock glaciers were identified. The vast majority of these rock glaciers, are talus rock glaciers, 74%, and 26%, are debris rock glaciers. In the area occupied by granites and granodiorites are present, 49% of all the rock glaciers, representing 61% of the area occupied by Southern Carpathians rock glaciers. This lithological dependence also leaves its mark on the specifics of the deposits, everything bearing the imprint of the particular way the rocks respond to the physical weathering processes, all in a periglacial regime. If in the domain of granites and granodiorites the blocks are large, - of metric order, even 10 m3 - , in the domain of the metamorphic rocks only gneisses can cut similar sizes. Amphibolites, amphibolitic schists, micaschists, sericite-chlorite schists and phyllites crop out in much smaller blocks, of decimetric order, mostly in the form of slabs. In the case of rock glaciers made up of large blocks, with a strcture of open-works type, the density and volume of voids between the blocks is greater, the smaller debris generating more compact structures with fewer voids. All these influences the thermal regime, associated with a certain type of air circulation during the seasons and the emergence of permafrost formation conditions. The rock glaciers are fed by rock falls, rock avalanches, debris flows, avalanches, so that the structure is heterogeneous, which is also reflected in the detailed topography of the rock glaciers. This heterogeneity is also influenced by the spatial assembly of the rock bodies in the supply area and, an element that cannot be omitted, the behavior of the rocks during periglacial weathering. The production of small gelifracts determines the filling of voids and the appearance of more compact structures, with effects on the creep process. In general, surface deposits are coarser, those in depth are finer, their characteristics being detectable by applying geophysical methods. The electrical tomography (ERT) and georadar (GPR) investigations carried out in the Făgăraş Mountains, Retezat and the Parâng Mountains, each with a different lithological specificity, allowed the identification of some differentiations, including the presence of permafrost bodies.

Keywords: rock glaciers deposits, structure, lithology, permafrost, Southern Carpathians, Romania

Procedia PDF Downloads 31
18227 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension

Authors: Muhammad Fiaz

Abstract:

The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.

Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis

Procedia PDF Downloads 73
18226 Analytical Study of CPU Scheduling Algorithms

Authors: Keshav Rathi, Aakriti Sharma, Vinayak R. Dinesh, Irfan Ramzan Parray

Abstract:

Scheduling is a basic operating system function since practically all computer resources are scheduled before use. The CPU is one of the most important computer resources. Central Processing Unit (CPU) scheduling is vital because it allows the CPU to transition between processes. A processor is the most significant resource in a computer; the operating system can increase the computer's productivity. The objective of the operating system is to allow as many processes as possible to operate at the same time in order to maximize CPU utilization. The highly efficient CPU scheduler is based on the invention of high-quality scheduling algorithms that meet the scheduling objectives. In this paper, we reviewed various fundamental CPU scheduling algorithms for a single CPU and showed which algorithm is best for the particular situation.

Keywords: computer science, Operating system, CPU scheduling, cpu algorithms

Procedia PDF Downloads 18
18225 EU-SOLARIS: The European Infrastructure for Concentrated Solar Thermal and Solar Chemistry Technologies

Authors: Vassiliki Drosou, Theoni Oikonomou

Abstract:

EU-SOLARIS will form a new legal entity to explore and implement improved rules and procedures for Research Infrastructures (RI) for Concentrated Solar Thermal (CST) and solar chemistry technologies, in order to optimize RI development and R&D coordination. It is expected to be the first of its kind, where industrial needs and private funding will play a significant role. The success of EU-SOLARIS initiative will be the establishment of a new governance body, aided by sustainable financial models. EU-SOLARIS is expected to be an important tool, which will provide the most complete, high quality scientific infrastructure portfolio at international level and to facilitate researchers' access to highly specialised research infrastructure through a single access point. This will be accomplished by linking scientific communities, industry and universities involved in the CST sector. The access to be offered by EU-SOLARIS will guarantee the direct contact of experienced scientists with newcomers and interested students. The set of RIs participating in EU-SOLARIS will offer access to state of the art infrastructures, high-quality services, and will enable users to conduct high quality research. Access to these facilities will contribute to the enhancement of the European research area by: -Opening installations to European and non-European scientists, coming from both academia and industry, thus improving co-operation. -Improving scientific critical mass in domains where knowledge is now widely dispersed. -Generating strong Europe-wide R&D project consortia, increasing the competitiveness of each member alone. EU-SOLARIS will be created in the framework of a European project, co-funded by the 7th Framework Programme of the European Union –whose initiative is to foster, contribute and promote the scientific and technological development of the CST and solar chemistry technologies. Primary objective of EU-SOLARIS is to contribute to the improvement of the state of the art of these technologies with the aim of preserving and reinforcing the European leadership in this field, in which EU-SOLARIS is expected to be a valuable instrument. EU-SOLARIS scope, activities, objectives, current status and vision will be given in the article. Moreover, the rules, processes and criteria regulating the access to the research infrastructures included in EU-SOLARIS will be presented.

Keywords: concentrated solar thermal (CST) technology, renewable energy sources, research infrastructures, solar chemistry

Procedia PDF Downloads 242
18224 Orientation of Rotating Platforms on Mobile Vehicles by GNNS

Authors: H. İmrek, O. Corumluoglu, B. Akdemir, I. Sanlioglu

Abstract:

It is important to be able to determine the heading direction of a moving vehicle with respect to a distant location. Additionally, it is important to be able to direct a rotating platform on a moving vehicle towards a distant position or location on the earth surface, especially for applications such as determination of the Kaaba direction for daily Muslim prayers. GNNS offers some reasonable solutions. In this study, a functional model of such a directing system supported by GNNS is discussed, and an appropriate system is designed for these purposes. An application for directing system is done by using RTK and DGNSS. Accuracy estimations are given for this system.

Keywords: GNNS, orientation of rotating platform, vehicle orientation, prayer aid device

Procedia PDF Downloads 398
18223 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate

Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad

Abstract:

CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.

Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory

Procedia PDF Downloads 123
18222 The Characteristics of a Fair and Efficient Tax Auditing Information System as a Tool against Tax Evasion: A Theoretical Framework

Authors: Dimitris Balios, Stefanos Tantos

Abstract:

Economic growth and social evolution are connected to trust relationships in a society. The quality of the accounting information, the tax information system and the tax audit mechanism evolve multiple benefits in an economy. Tax evasion, the illegal practice where people and companies do not pay taxes, is a crime because of the negative effect in economy and society. In this paper, we describe a theoretical framework on the characteristics of a fair and efficient tax auditing information system which could be a tool against tax evasion, a tool for an economy to grow, especially in countries that face fluctuations in economic activity. We conclude that a fair and efficient tax auditing information system increases the reliability of tax administration, improves taxpayers’ tax compliance and causes a developmental trajectory for the economy.

Keywords: auditing information system, auditing mechanism, tax evasion, taxation

Procedia PDF Downloads 158
18221 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 149
18220 Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems

Authors: Seyed Mohammad Hashemi, Shahrokh Barati

Abstract:

The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance.

Keywords: fault tolerant control, fault detection and isolation, actuator fault, unknown input observer

Procedia PDF Downloads 458
18219 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 589
18218 Impact of Modifying the Surface Materials on the Radiative Heat Transfer Phenomenon

Authors: Arkadiusz Urzędowski, Dorota Wójcicka-Migasiuk, Andrzej Sachajdak, Magdalena Paśnikowska-Łukaszuk

Abstract:

Due to the impact of climate changes and inevitability to reduce greenhouse gases, the need to use low-carbon and sustainable construction has increased. In this work, it is investigated how texture of the surface building materials and radiative heat transfer phenomenon in flat multilayer can be correlated. Attempts to test the surface emissivity are taken however, the trustworthiness of measurement results remains a concern since sensor size and thickness are common problems. This paper presents an experimental method to studies surface emissivity with use self constructed thermal sensors and thermal imaging technique. The surface of building materials was modified by mechanical and chemical treatment affecting the reduction of the emissivity. For testing the shaping surface of materials and mapping its three-dimensional structure, scanning profilometry were used in a laboratory. By comparing the results of laboratory tests and performed analysis of 3D computer fluid dynamics software, it can be shown that a change in the surface coverage of materials affects the heat transport by radiation between layers. Motivated by recent advancements in variational inference, this publication evaluates the potential use a dedicated data processing approach, and properly constructed temperature sensors, the influence of the surface emissivity on the phenomenon of radiation and heat transport in the entire partition can be determined.

Keywords: heat transfer, surface roughness, surface emissivity, radiation

Procedia PDF Downloads 104
18217 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 150
18216 Design of Labview Based DAQ System

Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid

Abstract:

The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.

Keywords: data acquisition, labview, signal conditioning, national instruments

Procedia PDF Downloads 497
18215 Living Wall Systems: An Approach for Reducing Energy Consumption in Curtain Wall Façades

Authors: Salma Maher, Ahmed Elseragy, Sally Eldeeb

Abstract:

Nowadays, Urbanism and climate change lead to the rapid growth in energy consumption and the increase of using air-conditioning for cooling. In a hot climate area, there is a need for a new sustainable alternative that is more convenient for an existing situation. The Building envelope controls the heat transfer between the outside and inside the building. While the building façade is the most critical part, types of façade material play a vital role in influences of the energy demand for heating and cooling due to exposure to direct solar radiation throughout the day. Since the beginning of the twentieth century, the use of curtain walls in office buildings façades started to increase rapidly, which lead to more cooling loads in energy consumption. Integrating the living wall system in urban areas as a sustainable renovation and energy-saving method for the built environment will reduce the energy demand of buildings and will also provide environmental benefits. Also, it will balance the urban ecology and enhance urban life quality. The results show that the living wall systems reduce the internal temperature up to 4.0 °C. This research carries on an analytical study by highlighting the different types of living wall systems and verifying their thermal performance, energy-saving, and life potential on the building. These assessing criteria include the reason for using the Living wall systems in the building façade as well as the effect it has upon the surrounding environment. Finally, the paper ends with concluding the effect of using living wall systems on building. And, it suggests a system as long-lasting, and energy-efficient solution to be applied in curtain wall façades in a hot climate area.

Keywords: living wall systems, energy consumption, curtain walls, energy-saving, sustainability, urban life quality

Procedia PDF Downloads 144
18214 Internet of Things Based Battery Management System

Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat

Abstract:

The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.

Keywords: electric vehicles, internet of things, sensors, state of charge, state of health

Procedia PDF Downloads 205
18213 Modeling of Micro-Grid System Components Using MATLAB/Simulink

Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim

Abstract:

Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.

Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling

Procedia PDF Downloads 439
18212 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 255
18211 A Focus Group Study of Student's Attitude towards University Teachers and Semester System

Authors: Sehrish Khan

Abstract:

The present study investigated the attitude of university students towards semester system and teachers with a specific objective of finding problems faced by students in semester system. 10 focus group discussions were conducted among students in five Universities of Hazara Division of KPK regarding their knowledge and attitudes about semester system and problems they faced due to this system and teacher’s attitude. The key findings were the problems like favoritism, gender biased ness, racial biased ness, biased ness in marking, relative marking, harassment, using students for personal tasks and authoritarian attitude from teachers’ side and the heavy tasks in less time which are causing stress among students. It was recommended that proper training and monitoring system should be maintained for evaluation of teachers to minimize the corruption in this sacred profession and maximize the optimal functioning. The information gathered in this research can be used to develop training modules for University teachers.

Keywords: university teachers, favoritism, biasedness, harassment

Procedia PDF Downloads 364
18210 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 428
18209 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 405
18208 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region

Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang

Abstract:

During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.

Keywords: cross section, neutron transport, numerical simulation, on-the-fly

Procedia PDF Downloads 199
18207 CO2 Mitigation by Promoting Solar Heating in Housing Sector

Authors: F. Sahnoune, M. Madani, M. Zelmat, M. Belhamel

Abstract:

Home heating and generation of domestic hot water are nowadays important items of expenditure and energy consumption. These are also a major source of pollution and emission of greenhouse gases (GHG). Algeria, like other countries of the southern shore of the Mediterranean has an enormous solar potential (more than 3000 hours of sunshine/year). This potential can be exploited in reducing GHG emissions and contribute to climate change adaptation. This work presents the environmental impact of introduction of solar heating in an individual house in Algerian climate conditions. For this purpose, we determined energy needs for heating and domestic hot water taking into account the thermic heat losses of the no isolated house. Based on these needs, sizing of the solar system was carried out. To compare the performances of solar and classic systems, we conducted also an economic evaluation what is very important for countries like Algeria where conventional energy is subsidized. The study clearly show that environmental and economic benefits are in favor of solar heating development in particular in countries where the thermal insulation of the building and energy efficiency are poorly developed.

Keywords: CO2 mitigation, solar energy, solar heating, environmental impact

Procedia PDF Downloads 401