Search results for: searching algorithm
1832 Community Observatory for Territorial Information Control and Management
Authors: A. Olivi, P. Reyes Cabrera
Abstract:
Ageing and urbanization are two of the main trends that characterize the twenty-first century. Its trending is especially accelerated in the emerging countries of Asia and Latin America. Chile is one of the countries in the Latin American region, where the demographic transition to ageing is becoming increasingly visible. The challenges that the new demographic scenario poses to urban administrators call for searching innovative solutions to maximize the functional and psycho-social benefits derived from the relationship between older people and the environment in which they live. Although mobility is central to people's everyday practices and social relationships, it is not distributed equitably. On the contrary, it can be considered another factor of inequality in our cities. Older people are a particularly sensitive and vulnerable group to mobility. In this context, based on the ageing in place strategy and following the social innovation approach within a spatial context, the "Community Observatory of Territorial Information Control and Management" project aims at the collective search and validation of solutions for the satisfaction of mobility and accessibility specific needs of urban aged people. Specifically, the Observatory intends to: i) promote the direct participation of the aged population in order to generate relevant information on the territorial situation and the satisfaction of the mobility needs of this group; ii) co-create dynamic and efficient mechanisms for the reporting and updating of territorial information; iii) increase the capacity of the local administration to plan and manage solutions to environmental problems at the neighborhood scale. Based on a participatory mapping methodology and on the application of digital technology, the Observatory designed and developed, together with aged people, a crowdsourcing platform for smartphones, called DIMEapp, for reporting environmental problems affecting mobility and accessibility. DIMEapp has been tested at a prototype level in two neighborhoods of the city of Valparaiso. The results achieved in the testing phase have shown high potential in order to i) contribute to establishing coordination mechanisms with the local government and the local community; ii) improve a local governance system that guides and regulates the allocation of goods and services destined to solve those problems.Keywords: accessibility, ageing, city, digital technology, local governance
Procedia PDF Downloads 1311831 Ant Colony Optimization Control for Multilevel STATCOM
Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa
Abstract:
Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)
Procedia PDF Downloads 5561830 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 651829 Conjugated Linoleic Acid Effect on Body Weight and Body Composition in Women: Systematic Review and Meta-Analysis
Authors: Hanady Hamdallah, H. Elyse Ireland, John H. H. Williams
Abstract:
Conjugated linoleic acid (CLA) is a food supplement that is reported to have multiple beneficial health effects, including being anti-carcinogenic, anti-inflammatory and anti-obesity. Animal studies have shown a significant anti-obesity effect of CLA, but results in humans were inconsistent, where some of the studies found an anti-obesity effect while other studies failed to find any decline in obesity markers after CLA supplementation. This meta-analysis aimed to determine if oral CLA supplementation has been shown to reduce obesity related markers in women. Pub Med, Cochrane Library, and Google Scholar were used to identify the eligible trials using two main searching strategies: the first one was to search eligible trials using keywords 'Conjugated linoleic acid', 'CLA', 'Women', and the second strategy was to extract the eligible trials from previously published systematic reviews and meta-analyses. The eligible trials were placebo control trials where women supplemented with CLA mixture in the form of oral capsules for 6 months or less. Also, these trials provided information about body composition expressed as body weight (BW), body mass index (BMI), total body fat (TBF), percentage body fat (BF %), and/ or lean body mass (LBM). The quality of each included study was assessed using both JADAD scale and an adapted CONSERT checklist. Meta-analysis of 8 eligible trials showed that CLA supplementation was significantly associated with reduced BW (Mean ± SD, 1.2 ± 0.26 kg, p < 0.001), BMI (0.6 ± 0.13kg/m², p < 0.001) and TBF (0.76 ± 0.26 kg, p= 0.003) in women, when supplemented over 6-16 weeks. Subgroup meta-analysis demonstrated a significant reduction in BW (1.29 ± 0.31 kg, p < 0.001), BMI (0.60 ± 0.14 kg/m², p < 0.001) and TBF (0.82 ± 0.28 kg, p= 0.003) in the trials that had recruited overweight-obese women. The second subgroup meta-analysis, that considered the menopausal status of the participants, found that CLA was significantly associated with reduced BW (1.35 ± 0.37 kg, p < 0.001; 1.05 ± 0.36 kg, p= 0.003) and BMI (0.50 ± 0.17 kg/m², p= 0.003; 0.75 ± 0.2 kg/m², p < 0.001) in both pre and post-menopausal age women, respectively. A reduction in TBF (1.09 ± 0.37 kg, p= 0.003) was only significant in post-menopausal women. Interestingly, CLA supplementation was associated with a significant reduction in BW (1.05 ± 0.35 kg, p< 0.003), BMI (0.73 ± 0.2 kg/m², p < 0.001) and TBF (1.07 ± 0.36 kg, p= 0.003) in the trials without lifestyle monitoring or interventions. No significant effect of CLA on LBM was detected in this meta-analysis. This meta-analysis suggests a moderate anti-obesity effect of CLA on BW, BMI and TBF reduction in women, when supplemented over 6-16 weeks, particularly in overweight-obese women and post-menopausal women. However, this finding requires careful interpretation due to several issues in the designs of available CLA supplementation trials. More well-designed trials are required to confirm this meta-analysis results.Keywords: body composition, body mass index, body weight, conjugated linoleic acid
Procedia PDF Downloads 2941828 Edge Detection in Low Contrast Images
Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey
Abstract:
The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.Keywords: low contrast image, fractional order differentiator, Laplacian of Gaussian (LoG) method, chebyshev polynomial
Procedia PDF Downloads 6361827 State of the Art on the Recommendation Techniques of Mobile Learning Activities
Authors: Nassim Dennouni, Yvan Peter, Luigi Lancieri, Zohra Slama
Abstract:
The objective of this article is to make a bibliographic study on the recommendation of mobile learning activities that are used as part of the field trip scenarios. Indeed, the recommendation systems are widely used in the context of mobility because they can be used to provide learning activities. These systems should take into account the history of visits and teacher pedagogy to provide adaptive learning according to the instantaneous position of the learner. To achieve this objective, we review the existing literature on field trip scenarios to recommend mobile learning activities.Keywords: mobile learning, field trip, mobile learning activities, collaborative filtering, recommendation system, point of interest, ACO algorithm
Procedia PDF Downloads 4461826 Implementation of a Predictive DTC-SVM of an Induction Motor
Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik
Abstract:
Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink
Procedia PDF Downloads 5181825 Detailed Observations on Numerically Invariant Signatures
Authors: Reza Aghayan
Abstract:
Numerically invariant signatures were introduced as a new paradigm of the invariant recognition for visual objects modulo a certain group of transformations. This paper shows that the current formulation suffers from noise and indeterminacy in the resulting joint group-signatures and applies the n-difference technique and the m-mean signature method to minimize their effects. In our experimental results of applying the proposed numerical scheme to generate joint group-invariant signatures, the sensitivity of some parameters such as regularity and mesh resolution used in the algorithm will also be examined. Finally, several interesting observations are made.Keywords: Euclidean and affine geometry, differential invariant G-signature curves, numerically invariant joint G-signatures, object recognition, noise, indeterminacy
Procedia PDF Downloads 3981824 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory
Authors: Liqin Zhang, Liang Yan
Abstract:
This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization
Procedia PDF Downloads 1251823 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text
Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert
Abstract:
This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies
Procedia PDF Downloads 1681822 The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation
Authors: Abdulmajid Mukhtar Afat
Abstract:
This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.Keywords: finite automata, subset construction, DFA, NFA
Procedia PDF Downloads 4261821 A Novel Combination Method for Computing the Importance Map of Image
Authors: Ahmad Absetan, Mahdi Nooshyar
Abstract:
The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality.Keywords: content-aware image resizing, visual saliency, edge density, image warping
Procedia PDF Downloads 5821820 European Project Meter Matters in Sports: Fostering Criteria for Inclusion through Sport
Authors: Maria Campos, Alain Massart, Hugo Sarmento
Abstract:
The Meter Matters Erasmus Sport European Project (ID: 101050372) explores the field of social inclusion in and through sports with the aim of a) proposing appropriate criteria for co-funding sports programs involving people with intellectual and developmental disabilities and other more vulnerable people, primarily in mainstream sports organizations and b) proposing a model for co-funding social inclusion in and through sports at the national level. This European project (2022-2024) involves 6 partners from 3 countries: Univerza V Ljubljani – coordinator and Drustvo Specialna Olimpiada Slovenije (Slovenia); Magyar Specialis Olimpia Szovetseg and Magyar Testnevelesi Es Sporttudomanyi Egyetem (Hungary) and APPDA Coimbra - Associação Portuguesa para as Perturbações do Desenvolvimento e Autismo and Universidade De Coimbra, Faculty of Sport Sciences and Physical Education (Portugal). Equal involvement of all people in sports activities is, in terms of national and international guidelines, enshrined in some conventions and strategies in the field of sports, as well as human rights, social security, physical and mental health, architecture, environment and public administration. However, there is a gap between the practice and EU guidelines in terms of sustainable support for socially inclusive sports programs in the form of co-funding by state and local (municipal) resources. We observe considerable opacity in the regulation of the field. Given that there are both relevant programs and inclusive legislation and policies, we believe that the reason for the missing article is reflected in the undeveloped criteria for measuring social inclusion in sports. Major sports programs are usually co-funded based on crowds (number of involved athletes) and performance (sports score). In the field of social inclusion in sports, the criteria cannot be the same, as it is a smaller population. Therefore, the goals of inclusion in sports should not be the focused on competitive results but on opening equal opportunities for all, regardless of their psychophysical abilities. In the Meter Matters program, we are searching for criteria for co-funding social inclusion in sports through focus groups with coaches, social workers, psychologists and others professionals involved in inclusive sports programs in regular sports clubs and with athletes and their parents or guardians. Moreover, experts in the field of social inclusion in sports were also interviewed. Based on the proposals for measuring social inclusion in sports, we developed a model for co-funding socially inclusive sports programs.Keywords: European project, meter matters, inclusion, sport
Procedia PDF Downloads 1111819 Independent Encryption Technique for Mobile Voice Calls
Authors: Nael Hirzalla
Abstract:
The legality of some countries or agencies’ acts to spy on personal phone calls of the public became a hot topic to many social groups’ talks. It is believed that this act is considered an invasion to someone’s privacy. Such act may be justified if it is singling out specific cases but to spy without limits is very unacceptable. This paper discusses the needs for not only a simple and light weight technique to secure mobile voice calls but also a technique that is independent from any encryption standard or library. It then presents and tests one encrypting algorithm that is based of frequency scrambling technique to show fair and delay-free process that can be used to protect phone calls from such spying acts.Keywords: frequency scrambling, mobile applications, real-time voice encryption, spying on calls
Procedia PDF Downloads 4791818 Artificial Intelligence Ethics: What Business Leaders Need to Consider for the Future
Authors: Kylie Leonard
Abstract:
Investment in artificial intelligence (AI) can be an attractive opportunity for business leaders as there are many easy-to-see benefits. These benefits include task completion rates, overall cost, and better forecasting. Business leaders are often unaware of the challenges that can accompany AI, such as data center costs, access to data, employee acceptance, and privacy concerns. In addition to the benefits and challenges of AI, it is important to practice AI ethics to ensure the safe creation of AI. AI ethics include aspects of algorithm bias, limits in transparency, and surveillance. To be a good business leader, it is critical to address all the considerations involving the challenges of AI and AI ethics.Keywords: artificial intelligence, artificial intelligence ethics, business leaders, business concerns
Procedia PDF Downloads 1471817 Grid Pattern Recognition and Suppression in Computed Radiographic Images
Authors: Igor Belykh
Abstract:
Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.Keywords: grid, computed radiography, pattern recognition, image processing, filtering
Procedia PDF Downloads 2831816 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images
Authors: M. Dasgupta, S. Banerjee
Abstract:
Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.Keywords: case based reasoning, exudates, retina image, similarity based retrieval
Procedia PDF Downloads 3481815 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 821814 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 3981813 Decision-Making in the Internationalization Process of Small and Medium Sized Companies: Experience from Managers in a Small Economy
Authors: Gunnar Oskarsson, Gudjon Helgi Egilsson
Abstract:
Due to globalization, small and medium-sized enterprises (SME) increasingly offer their products and services in foreign markets. The main reasons are either to compensate for a decreased market share in their home market or to exploit opportunities in foreign markets, which are becoming less distant and better accessible than before. International markets are particularly important for companies located in a small economy and offering specialized products. Although more accessible, entering international markets is both expensive and difficult. In order to select the most appropriate markets, it is, therefore, important to gain an insight into the factors that have an impact on success, or potential failure. Although there has been a reasonable volume of research into the theory of internationalization, there is still a need to gain further understanding of the decision-making process of SMEs in small economies and the most important characteristics that distinguish between success and failure. The main objective of this research is to enhance knowledge on the internationalization of SMEs, including the drivers for the decision to internationalize, and the most important factors contributing to success in their internationalization activities. A qualitative approach was found to be most appropriate for this kind of research, with the objective of gaining a deeper understanding and discovering factors which impact a company’s decision-making and potential success. In-depth interviews were conducted with 14 companies in different industries located in Iceland, a country extensively dependent on export revenues. The interviews revealed several factors as drivers of internationalization and, not surprisingly, the most frequently mentioned source of motivation was that the local market is inadequate to maintain a sustainable operation. Good networking relationships were seen as a particular priority for potential success, searching for new markets was mainly carried out through the internet, although sales exhibitions and sales trips were also considered important. When it comes to the final decision as to whether a market should be considered for further analysis, economy, labor cost, legal environment, and cultural barriers were the most common factors to be weighted. The ultimate answer to successful internationalization, however, is largely dependent on a coordinated and experienced management team. The main contribution of this research is offering an insight into factors affecting decision-making in the internationalization process of SMEs, based on the opinion and experience of managers of SMEs in a small economy.Keywords: internationalization, success factors, small and medium-sized enterprises (SMEs), drivers, decision making
Procedia PDF Downloads 2401812 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement
Authors: Tudor Barbu
Abstract:
We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes
Procedia PDF Downloads 3131811 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 2821810 Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units
Authors: Meltem Kürtüncü, Işın Alkan
Abstract:
Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units.Keywords: lullaby, mother voice, relaxation, stress
Procedia PDF Downloads 2311809 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation
Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber
Abstract:
Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.Keywords: indoor power line, fault location, fault map trace, series arc fault
Procedia PDF Downloads 1371808 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 6331807 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.Keywords: neural network, conformal prediction, cancer classification, regression
Procedia PDF Downloads 2911806 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation
Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim
Abstract:
In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement
Procedia PDF Downloads 1171805 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 521804 Survey on Big Data Stream Classification by Decision Tree
Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi
Abstract:
Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.Keywords: big data, data streams, classification, decision tree
Procedia PDF Downloads 5211803 The Economic Burden of Mental Disorders: A Systematic Review
Authors: Maria Klitgaard Christensen, Carmen Lim, Sukanta Saha, Danielle Cannon, Finley Prentis, Oleguer Plana-Ripoll, Natalie Momen, Kim Moesgaard Iburg, John J. McGrath
Abstract:
Introduction: About a third of the world’s population will develop a mental disorder over their lifetime. Having a mental disorder is a huge burden in health loss and cost for the individual, but also for society because of treatment cost, production loss and caregivers’ cost. The objective of this study is to synthesize the international published literature on the economic burden of mental disorders. Methods: Systematic literature searches were conducted in the databases PubMed, Embase, Web of Science, EconLit, NHS York Database and PsychInfo using key terms for cost and mental disorders. Searches were restricted to 1980 until May 2019. The inclusion criteria were: (1) cost-of-illness studies or cost-analyses, (2) diagnosis of at least one mental disorder, (3) samples based on the general population, and (4) outcome in monetary units. 13,640 publications were screened by their title/abstract and 439 articles were full-text screened by at least two independent reviewers. 112 articles were included from the systematic searches and 31 articles from snowball searching, giving a total of 143 included articles. Results: Information about diagnosis, diagnostic criteria, sample size, age, sex, data sources, study perspective, study period, costing approach, cost categories, discount rate and production loss method and cost unit was extracted. The vast majority of the included studies were from Western countries and only a few from Africa and South America. The disorder group most often investigated was mood disorders, followed by schizophrenia and neurotic disorders. The disorder group least examined was intellectual disabilities, followed by eating disorders. The preliminary results show a substantial variety in the used perspective, methodology, costs components and outcomes in the included studies. An online tool is under development enabling the reader to explore the published information on costs by type of mental disorder, subgroups, country, methodology, and study quality. Discussion: This is the first systematic review synthesizing the economic cost of mental disorders worldwide. The paper will provide an important and comprehensive overview over the economic burden of mental disorders, and the output from this review will inform policymaking.Keywords: cost-of-illness, health economics, mental disorders, systematic review
Procedia PDF Downloads 131