Search results for: prediction modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: prediction modelling

1837 Deformation Analysis of Pneumatized Sphenoid Bone Caused Due to Elevated Intracranial Pressure Using Finite Element Analysis

Authors: Dilesh Mogre, Jitendra Toravi, Saurabh Joshi, Prutha Deshpande, Aishwarya Kura

Abstract:

In earlier days of technology, it was not possible to understand the nature of complex biomedical problems and were only left to clinical postulations. With advancement in science today, we have tools like Finite Element Modelling and simulation to solve complex biomedical problems. This paper presents how ANSYS WORKBENCH can be used to study deformation of pneumatized sphenoid bone caused by increased intracranial pressure. Intracranial pressure refers to the pressure inside the skull. The increase in the pressure above the normal range of 15mmhg can lead to serious conditions due to developed stresses and deformation. One of the areas where the deformation is suspected to occur is Sphenoid Bone. Moreover, the varying degree of pneumatization increases the complexity of the conditions. It is necessary to study deformation patterns on pneumatized sphenoid bone model at elevated intracranial pressure. Finite Element Analysis plays a major role in developing and analyzing model and give quantitative results.

Keywords: intracranial pressure, pneumatized sphenoid bone, deformation, finite element analysis

Procedia PDF Downloads 196
1836 Near-Infrared Spectrometry as an Alternative Method for Determination of Oxidation Stability for Biodiesel

Authors: R. Velvarska, A. Vrablik, M. Fiedlerova, R. Cerny

Abstract:

Near-infrared spectrometry (NIR) was tested as a rapid and alternative tool for determination of biodiesel oxidation stability. A PetroOxy method is standardly used for the determination, but this method is hazardous due to the possibility of explosion and ignition of flammable fuels. The second disadvantage is time consuming. The near-infrared spectrometry served for the development of the calibration model which was composed of 133 real samples (calibration standards). The reference values of these standards were obtained by PetroOxy method. Many chemometric diagnostics were used for the development of the final NIR model with the aim to have accurate prediction of the oxidation stability. The final NIR model was validated by 30 validation standards. The repeatability was determined as well with the acceptable residual standard deviation (8.59 %). The NIR spectrometry has proved to be an accurate alternative method for the determination of biodiesel oxidation stability with advantages as the time and cost saving, non-destructive character of analyzing and the possibility of online monitoring in safe mode.

Keywords: biodiesel, fatty acid methyl ester, NIR, oxidation stability

Procedia PDF Downloads 175
1835 Concussion Prediction for Speed Skater Impacting on Crash Mats by Computer Simulation Modeling

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Concussion for speed skaters often occurs when skaters fall on the ice and impact the crash mats during practices and competition races. Gaining insight into the impact of interactions is of essential interest as it is directly related to skaters’ potential health risks and injuries. Precise concussion measurements are challenging and very difficult, making computer simulation the only reliable way to analyze accidents. This research aims to create the crash mat and skater’s multi-body model using Solidworks, develop a computer simulation model for skater-mat impact using ANSYS software, and predict the skater’s concussion degree by evaluating the “head injury criteria” (HIC) through the resulting accelerations. The developed method and results help understand the relationship between impact parameters and concussion risk for speed skaters and inform the design of crash mats and skating rink layouts more specifically by considering athletes’ health risks.

Keywords: computer simulation modeling, concussion, impact, speed skater

Procedia PDF Downloads 142
1834 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.

Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling

Procedia PDF Downloads 427
1833 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling

Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada

Abstract:

In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.

Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic

Procedia PDF Downloads 324
1832 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function

Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu

Abstract:

Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.

Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model

Procedia PDF Downloads 396
1831 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
1830 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 80
1829 Examining the Effects of Production Method on Aluminium A356 Alloy and A356-10%SiCp Composite for Hydro Turbine Bucket Application

Authors: Williams S. Ebhota, Freddie L. Inambao

Abstract:

This study investigates the use of centrifugal casting method to fabricate functionally graded aluminium A356 Alloy and A356-10%SiCp composite for hydro turbine bucket application. The study includes the design and fabrication of a permanent mould. The mould was put into use and the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some specimens were given T6 heat treatment and the specimens were prepared for different examinations accordingly. The SiCp particles were found to be more at inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite was recorded at the inner periphery to be 60 BRN and 95BRN, respectively. And these values were appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite, respectively. It was observed that the ultimate tensile stress and yield tensile stress prediction curves show the same trend.

Keywords: A356 alloy, A356-10%SiCp composite, centrifugal casting, Pelton bucket, turbine blade

Procedia PDF Downloads 282
1828 Flipped Learning in the Delivery of Structural Analysis

Authors: Ali Amin

Abstract:

This paper describes a flipped learning initiative which was trialed in the delivery of the course: structural analysis and modelling. A short series of interactive videos were developed, which introduced the key concepts of each topic. The purpose of the videos was to introduce concepts and give the students more time to develop their thoughts prior to the lecture. This allowed more time for face to face engagement during the lecture. As part of the initial study, videos were developed for half the topics covered. The videos included a short summary of the key concepts ( < 10 mins each) as well as fully worked-out examples (~30mins each). Qualitative feedback was attained from the students. On a scale from strongly disagree to strongly agree, students were rate statements such as 'The pre-class videos assisted your learning experience', 'I felt I could appreciate the content of the lecture more by watching the videos prior to class'. As a result of the pre-class engagement, the students formed more specific and targeted questions during class, and this generated greater comprehension of the material. The students also scored, on average, higher marks in questions pertaining to topics which had videos assigned to them.

Keywords: flipped learning, structural analysis, pre-class videos, engineering education

Procedia PDF Downloads 91
1827 An Accidental Forecasting Modelling for Various Median Roads

Authors: Pruethipong Xinghatiraj, Rajwanlop Kumpoopong

Abstract:

Considering the current situation of road safety, Thailand has the world’s second-highest road fatality rate. Therefore, decreasing the road accidents in Thailand is a prime policy of the Thai government seeking to accomplish. One of the approaches to reduce the accident rate is to improve road environments to fit with the local behavior of the road users. The Department of Highways ensures that choosing the road median types right to the road characteristics, e.g. roadside characteristics, traffic volume, truck traffic percentage, etc., can decrease the possibility of accident occurrence. Presently, raised median, depressed median, painted median and median barriers are typically used in Thailand Highways. In this study, factors affecting road accident for each median type will be discovered through the analysis of the collecting of accident data, death numbers on sample of 600 Kilometers length across the country together with its roadside characteristics, traffic volume, heavy vehicles percentage, and other key factors. The benefits of this study can assist the Highway designers to select type of road medians that can match local environments and then cause less accident prone.

Keywords: highways, road safety, road median, forecasting model

Procedia PDF Downloads 269
1826 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine

Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori

Abstract:

Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.

Keywords: LR115, radon concentration, rime series, underground goldmine

Procedia PDF Downloads 47
1825 Determinant Elements for Useful Life in Airports

Authors: Marcelo Müller Beuren, José Luis Duarte Ribeiro

Abstract:

Studies point that Brazilian large airports are not managing their assets efficiently. Therefore, organizations seek improvements to raise their asset’s productivity. Hence, identification of assets useful life in airports becomes an important subject, since its accuracy leads to better maintenance plans and technological substitution, contribution to airport services management. However, current useful life prediction models do not converge in terms of determinant elements used, as they are particular to the studied situation. For that reason, the main objective of this paper is to identify the determinant elements for a useful life of major assets in airports. With that purpose, a case study was held in the key airport of the south of Brazil trough historical data analysis and specialist interview. This paper concluded that most of the assets useful life are determined by technical elements, maintenance cost, and operational costs, while few presented influence of technological obsolescence. As a highlight, it was possible to identify the determinant elements to be considered by a model which objective is to identify the useful life of airport’s major assets.

Keywords: airports, asset management, asset useful life

Procedia PDF Downloads 523
1824 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 209
1823 Techno-Economic Assessment of Aluminum Waste Management

Authors: Hamad Almohamadi, Abdulrahman AlKassem, Majed Alamoudi

Abstract:

Dumping Aluminum (Al) waste into landfills causes several health and environmental problems. The pyrolysis process could treat Al waste to produce AlCl₃ and H₂. Using the Aspen Plus software, a techno-economic and feasibility assessment has been performed for Al waste pyrolysis. The Aspen Plus simulation was employed to estimate the plant's mass and energy balance, which was assumed to process 100 dry metric tons of Al waste per day. This study looked at two cases of Al waste treatment. The first case produces 355 tons of AlCl₃ per day and 9 tons of H₂ per day without recycling. The conversion rate must be greater than 50% in case 1 to make a profit. In this case, the MSP for AlCl₃ is $768/ton. The plant would generate $25 million annually if the AlCl₃ were sold at $1000 per ton. In case 2 with recycling, the conversion has less impact on the plant's profitability than in case 1. Moreover, compared to case 1, the MSP of AlCl₃ has no significant influence on process profitability. In this scenario, if AlCl₃ were sold at $1000/ton, the process profit would be $58 million annually. Case 2 is better than case 1 because recycling Al generates a higher yield than converting it to AlCl₃ and H₂.

Keywords: aluminum waste, aspen plus, process modelling, fast pyrolysis, techno-economic assessment

Procedia PDF Downloads 94
1822 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section

Authors: Redouane Lombarkia

Abstract:

To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental results

Keywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA

Procedia PDF Downloads 96
1821 Emotion and Risk Taking in a Casino Game

Authors: Yulia V. Krasavtseva, Tatiana V. Kornilova

Abstract:

Risk-taking behaviors are not only dictated by cognitive components but also involve emotional aspects. Anticipatory emotions, involving both cognitive and affective mechanisms, are involved in decision-making in general, and risk-taking in particular. Affective reactions are prompted when an expectation or prediction is either validated or invalidated in the achieved result. This study aimed to combine predictions, anticipatory emotions, affective reactions, and personality traits in the context of risk-taking behaviors. An experimental online method Emotion and Prediction In a Casino (EPIC) was used, based on a casino-like roulette game. In a series of choices, the participant is presented with progressively riskier roulette combinations, where the potential sums of wins and losses increase with each choice and the participant is given a choice: to 'walk away' with the current sum of money or to 'play' the displayed roulette, thus accepting the implicit risk. Before and after the result is displayed, participants also rate their emotions, using the Self-Assessment Mannequin [Bradley, Lang, 1994], picking a picture, representing the intensity of pleasure, arousal, and dominance. The following personality measures were used: 1) Personal Decision-Making Factors [Kornilova, 2003] assessing risk and rationality; 2) I7 – Impulsivity Questionnaire [Kornilova, 1995] assessing impulsiveness, risk readiness, and empathy and 3) Subjective Risk Intelligence Scale [Craparo et al., 2018] assessing negative attitude toward uncertainty, emotional stress vulnerability, imaginative capability, and problem-solving self-efficacy. Two groups of participants took part in the study: 1) 98 university students (Mage=19.71, SD=3.25; 72% female) and 2) 94 online participants (Mage=28.25, SD=8.25; 89% female). Online participants were recruited via social media. Students with high rationality rated their pleasure and dominance before and after choices as lower (ρ from -2.6 to -2.7, p < 0.05). Those with high levels of impulsivity rated their arousal lower before finding out their result (ρ from 2.5 - 3.7, p < 0.05), while also rating their dominance as low (ρ from -3 to -3.7, p < 0.05). Students prone to risk-rated their pleasure and arousal before and after higher (ρ from 2.5 - 3.6, p < 0.05). High empathy was positively correlated with arousal after learning the result. High emotional stress vulnerability positively correlates with arousal and pleasure after the choice (ρ from 3.9 - 5.7, p < 0.05). Negative attitude to uncertainty is correlated with high anticipatory and reactive arousal (ρ from 2.7 - 5.7, p < 0.05). High imaginative capability correlates negatively with anticipatory and reactive dominance (ρ from - 3.4 to - 4.3, p < 0.05). Pleasure (.492), arousal (.590), and dominance (.551) before and after the result were positively correlated. Higher predictions positively correlated with reactive pleasure and arousal. In a riskier scenario (6/8 chances to win), anticipatory arousal was negatively correlated with the pleasure emotion (-.326) and vice versa (-.265). Correlations occur regardless of the roulette outcome. In conclusion, risk-taking behaviors are linked not only to personality traits but also to anticipatory emotions and affect in a modeled casino setting. Acknowledgment: The study was supported by the Russian Foundation for Basic Research, project 19-29-07069.

Keywords: anticipatory emotions, casino game, risk taking, impulsiveness

Procedia PDF Downloads 135
1820 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error

Procedia PDF Downloads 324
1819 Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity

Authors: Eun Kyung Kim, Kyehan Rhee

Abstract:

Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression.

Keywords: atherosclerotic plaque, diameter variation, finite element method, viscoelasticity

Procedia PDF Downloads 217
1818 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies

Keywords: rotor, crack, rubbing, axial force, non linear

Procedia PDF Downloads 401
1817 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation

Authors: Mounia El Hafyani, Khalid El Himdi

Abstract:

Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.

Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations

Procedia PDF Downloads 127
1816 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques

Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah

Abstract:

Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or under-estimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improves accuracies. This requires standard measurement methods to be structured in ontologically and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.

Keywords: BIM, construction projects, cost estimation, NRM, ontology

Procedia PDF Downloads 551
1815 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 369
1814 Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference

Authors: Betty Johanna Garzon Rozo, Jonathan Crook, Fernando Moreira

Abstract:

Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation.

Keywords: operational risk, loss distribution approach, extreme value theory, copulas

Procedia PDF Downloads 604
1813 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 153
1812 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data

Authors: Benjamin Leiby, Darryl Ahner

Abstract:

This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions while presenting a need for further refinement that mimics predictive mean matching.

Keywords: correlation, country conflict, imputation, stochastic regression

Procedia PDF Downloads 120
1811 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling

Procedia PDF Downloads 516
1810 Efficient Sampling of Probabilistic Program for Biological Systems

Authors: Keerthi S. Shetty, Annappa Basava

Abstract:

In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.

Keywords: systems biology, probabilistic model, inference, biology, model

Procedia PDF Downloads 349
1809 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling

Procedia PDF Downloads 393
1808 Estimating Pile Toe Levels for Capacity Assessment of Piers and Wharves in the Philippines

Authors: Ailvy Faith Zamora, Serj Donn David, Michael Anderson

Abstract:

There are a number of decades-old piers and wharves in Manila, Philippines, that are currently being used for container and bulk cargo handling port operations. These structures fulfill a very important role in the economy and hence have undergone rehabilitation and assessment of capacity to accommodate current and future operational requirements. The capacity assessment would include structural and pile geotechnical evaluation. Unfortunately, old marine structures in the Philippines may not have a complete set of as-built information. In certain instances, critical information, such as pile toe levels, is missing in the documentation. A combination of direct tests, geophysical tests, and numerical analysis/modelling has been performed to estimate existing pile toe levels of open-type piers and anchored quay wall wharves in Manila. These techniques were applied to both concrete and steel piles. This paper presents the tools utilized, testing setup, and techniques used for estimating toe levels of existing piles for certain structures, including the challenges encountered and applied solutions.

Keywords: geophysical testing, pile toe level, structural assessment, piers, wharves

Procedia PDF Downloads 131