Search results for: voltage stability analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30893

Search results for: voltage stability analysis

30713 Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model

Authors: Kang Sungjae

Abstract:

This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations.

Keywords: locomotion, center of mass, gait stability, linear inverted pendulum model

Procedia PDF Downloads 517
30712 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 280
30711 Investigation of Threshold Voltage Shift in Gamma Irradiated N-Channel and P-Channel MOS Transistors of CD4007

Authors: S. Boorboor, S. A. H. Feghhi, H. Jafari

Abstract:

The ionizing radiations cause different kinds of damages in electronic components. MOSFETs, most common transistors in today’s digital and analog circuits, are severely sensitive to TID damage. In this work, the threshold voltage shift of CD4007 device, which is an integrated circuit including P-channel and N-channel MOS transistors, was investigated for low dose gamma irradiation under different gate bias voltages. We used linear extrapolation method to extract threshold voltage from ID-VG characteristic curve. The results showed that the threshold voltage shift was approximately 27.5 mV/Gy for N-channel and 3.5 mV/Gy for P-channel transistors at the gate bias of |9 V| after irradiation by Co-60 gamma ray source. Although the sensitivity of the devices under test were strongly dependent to biasing condition and transistor type, the threshold voltage shifted linearly versus accumulated dose in all cases. The overall results show that the application of CD4007 as an electronic buffer in a radiation therapy system is limited by TID damage. However, this integrated circuit can be used as a cheap and sensitive radiation dosimeter for accumulated dose measurement in radiation therapy systems.

Keywords: threshold voltage shift, MOS transistor, linear extrapolation, gamma irradiation

Procedia PDF Downloads 283
30710 Nanocrystalline Cellulose from Oil Palm Fiber

Authors: Ridzuan Ramli, Zianor Azrina Zianon Abdin, Mohammad Dalour Beg, Rosli M. Yunus

Abstract:

Nanocrystalline cellulose (NCC) were produced by using the ultrasound assisted acid hydrolysis from oil palm empty fruit bunch (EFB) pulp with different hydrolysis time then were analyzed by using FESEM and TGA as in comparison with EFB fiber and EFB pulp. Based on the FESEM analysis, it was found that NCC has a rod like shaped under the acid hydrolysis with an assistant of ultrasound. According to thermal stability, the NCC obtained show remarkable sign of high thermal stability compared to EFB fiber and EFB pulp. However, as the hydrolysis time increase, the thermal stability of NCC was deceased. As in conclusion, the NCC can be prepared by using ultrasound assisted acid hydrolysis. The NCC obtained have good thermal stability and have a great potential as the reinforcement in composite materials.

Keywords: Nanocrystalline cellulose, ultrasound assisted acid hydrolysis, thermal stability, morphology, empty fruit bunch (EFB)

Procedia PDF Downloads 479
30709 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

Authors: Nisha Budhwar, Sunita Daniel

Abstract:

In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Keywords: equilibrium points, exposed, global stability, infective immigrants, Lyapunov function, recovered, reproduction number, susceptible

Procedia PDF Downloads 365
30708 The Effect of Oxidation Stability Improvement in Calophyllum Inophyllum Palm Oil Methyl Ester Production

Authors: Natalina, Hwai Chyuan Onga, W. T. Chonga

Abstract:

Oxidation stability of biodiesel is very important in fuel handling especially for remote location of biodiesel application. Variety of feedstocks and biodiesel production process resulted many variation of biodiesel oxidation stability. The current study relates to investigation of the impact of fatty acid composition that caused by natural and production process of calophyllum inophyllum palm oil methyl ester that correlated with improvement of biodiesel oxidation stability. Firstly, biodiesel was produced from crude oil of palm oil, calophyllum inophyllum and mixing of calophyllum inophyllum and palm oil. The production process of calophyllum inophyllum palm oil methyl ester (CIPOME) was divided by including washing process and without washing. Secondly, the oxidation stability was measured from the palm oil methyl ester (POME), calophyllum inophyllum methyl ester (CIME), CIPOME with washing process and CIPOME without washing process. Then, in order to find the differences of fatty acid compositions all of the biodiesels were measured by gas chromatography analysis. It was found that mixing calophyllum inophyllum into palm oil increased the oxidation stability. Washing process influenced the CIPOME fatty acid composition, and reduction of washing process during the production process gave significant oxidation stability number of CIPOME (38 h to 114 h).

Keywords: biodiesel, oxidation stability, calophyllum inophyllum, water content

Procedia PDF Downloads 270
30707 Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit

Authors: Ahmed Shariful Alam, Abu Hena M. Mustafa Kamal, M. Abdul Rahman, M. Nasmus Sakib Khan Shabbir, Atiqul Islam

Abstract:

According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. 35mV supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was 3.5V.

Keywords: ITRS, enhancement type MOSFET, island, DC analysis, transient analysis, power consumption, background charge co-tunneling

Procedia PDF Downloads 526
30706 Transient Signal Generator For Fault Indicator Testing

Authors: Mohamed Shaban, Ali Alfallah

Abstract:

This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signal

Keywords: signal generator-fault indicator, harmonic signal generator, voltage output

Procedia PDF Downloads 495
30705 Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation

Authors: R. S. Al Abri, M. H. Albadi, M. H. Al Abri, U. K. Al Rasbi, M. H. Al Hasni, S. M. Al Shidi

Abstract:

This paper presents an analysis study on the impacts of the changes of the capacitor banks, the loss of a transformer, and the installation of distributed generation on the voltage total harmonic distortion and harmonic resonance. The study is applied in a real system in Oman, Sohar Industrial Port–C Substation Network. Frequency scan method and Fourier series analysis method are used with the help of EDSA software. Moreover, the results are compared with limits specified by national Oman distribution code.

Keywords: power quality, capacitor bank, voltage total harmonics distortion, harmonic resonance, frequency scan

Procedia PDF Downloads 617
30704 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki

Abstract:

This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 392
30703 Investigation on the stability of rock slopes subjected to tension cracks via limit analysis

Authors: Weigao. Wu, Stefano. Utili

Abstract:

Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.

Keywords: Hoek-Brown failure criterion, limit analysis, rock slope, tension cracks

Procedia PDF Downloads 344
30702 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu

Abstract:

This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.

Keywords: tooling condition, machining stability, milling machine, chatter

Procedia PDF Downloads 431
30701 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 229
30700 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction

Authors: Alisawi Alaa T., Collins P. E. F.

Abstract:

The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.

Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard

Procedia PDF Downloads 100
30699 Review on Low Actuation Voltage RF Mems Switches

Authors: Hassan Saffari, Reza Askari Moghadam

Abstract:

In modern communication systems, it is highly demanded to achieve high performance with minimal power consumption. Low actuation voltage RF MEMS (Micro-Electro-Mechanical Systems) switches represent a significant advancement in this regard. These switches, with their ability to operate at lower voltages, offer promising solutions for enhancing connectivity while minimizing energy consumption. Microelectromechanical switches are good alternatives for electronic and mechanical switches due to their low insertion loss, high isolation, and fast switching speeds. They have attracted more attention in recent years. Most of the presented RF MEMS switches use electrostatic actuators due to their low power consumption. Low actuation voltage RF MEMS switches are among the important issues that have been investigated in research articles. The actuation voltage can be reduced by different methods. One usually implemented method is low spring constant structures. However, despite their numerous benefits, challenges remain in the widespread adoption of low-actuation voltage RF MEMS switches. Issues related to reliability, durability, and manufacturing scalability need to be addressed to realize their full potential in commercial applications. While overcoming certain challenges, their exceptional performance characteristics and compatibility with miniaturized electronic systems make them a promising choice for next-generation wireless communication and RF applications. In this paper, some previous works that proposed low-voltage actuation RF MEMS switches are investigated and analyzed.

Keywords: RF MEMS switches, low actuation voltage, small spring constant structures, electrostatic actuation

Procedia PDF Downloads 47
30698 Assessment and Mitigation of Slope Stability Hazards Along Kombolcha-Desse Road, Northern Ethiopia

Authors: Biruk Wolde Eremacho

Abstract:

The Kombolcha to Desse road, linking Addis Ababa with Northern Ethiopia towns traverses through one of the most difficult mountainous ranges in Ethiopia. The presence of loose unconsolidated materials (colluvium materials), highly weathered and fractured basalt rocks high relief, steep natural slopes, nature of geologic formations exposed along the road section, poor drainage conditions, occurrence of high seasonal rains, and seismically active nature of the region created favorable condition for slope instability in the area. Thus, keeping in mind all above points the present study was conceived to study in detail the slope stability condition of the area. It was realized that detailed slope stability studies along this road section are very necessary to identify critical slopes and to provide the best remedial measures to minimize the slope instability problems which frequently disrupt and endanger the traffic movement on this important road. For the present study based on the field manifestation of instability two most critical slope sections were identified for detailed slope stability analysis. The deterministic slope stability analysis approach was followed to perform the detailed slope stability analysis of the selected slope sections. Factor of safety for the selected slope sections was determined for the different anticipated conditions (i.e., static and dynamic with varied water saturations) using Slope/W and Slide software. Both static and seismic slope stability analysis were carried out and factor of safety was deduced for each anticipated conditions. In general, detailed slope stability analysis of the two critical slope sections reveals that for only static dry condition both the slopes sections would be stable. However, for the rest anticipated conditions defined by static and dynamic situations with varied water saturations both critical slope sections would be unstable. Moreover, the causes of slope instability in the study area are governed by different factors; therefore integrated approaches of remedial measures are more appropriate to mitigate the possible slope instability in the study area. Depending on site condition and slope stability analysis result four types of suitable preventive and remedial measures are recommended namely; proper managements of drainages, retaining structures, gabions, and managing steeply cut slopes.

Keywords: factor of safety, remedial measures, slope stability analysis, static and dynamic condition

Procedia PDF Downloads 279
30697 Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions

Authors: Fakhreddin Abedi, Wah June Leong

Abstract:

Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.

Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito's formula

Procedia PDF Downloads 52
30696 Design and Stability Analysis of Fixed Wing – VTOL UAV

Authors: Omar Eldenali, Ahmed M. Bufares

Abstract:

There are primarily two types of Unmanned Aerial Vehicle (UAVs), namely, multirotor and fixed wing. Each type has its own advantages. This study introduces a design of a fixed wing vertical take-off and landing (VTOL) UAV. The design is classified as ready-to-fly (RTF) fixed wing UAV. This means that the UAV is capable of not only taking off, landing, or hovering like a multirotor aircraft but also cruising like a fixed wing UAV. In this study, the conceptual design of 15 kg takeoff weight twin-tail boom configuration FW-VTOL plane is carried out, the initial sizing of the plane is conducted, and both the horizontal and vertical tail configurations are estimated. Moreover, the power required for each stage of flight is determined. Finally, the stability analysis of the plane based on this design is performed, the results shows that this design based on the suggested flight mission is stable and can be utilized.

Keywords: FW-VTOL, initial sizing, constrain analysis, stability

Procedia PDF Downloads 88
30695 Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology

Authors: Radia Chemlal, Salim Mehenni, Dahbia Leila Anes-boulahbal, Mohamed Kherat, Nabil Mameri

Abstract:

The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line.

Keywords: continuous electric field, RD cancer cell line, RSM, voltage

Procedia PDF Downloads 113
30694 Voltage Controlled Ring Oscillator for RF Applications in 0.18 µm CMOS Technology

Authors: Mohammad Arif Sobhan Bhuiyan, Zainal Abidin Nordin, Mamun Bin Ibne Reaz

Abstract:

A compact and power efficient high performance Voltage Controlled Oscillator (VCO) is a must in analog and digital circuits especially in the communication system, but the best trade-off among the performance parameters is a challenge for researchers. In this paper, a design of a compact 3-stage differential voltage controlled ring oscillator (VCRO) with low phase noise, low power and higher tuning bandwidth is proposed in 0.18 µm CMOS technology. The VCRO is designed with symmetric load and positive feedback techniques to achieve higher gain and minimum delay. The proposed VCRO can operate at tuning range of 3.9-5.0 GHz at 1.6 V supply voltage. The circuit consumes only 1.0757 mW of power and produces -129 dbc/Hz. The total active area of the proposed VCRO is only 11.74 x 37.73 µm2. Such a VCO can be the best choice for compact and low-power RF applications.

Keywords: CMOS, VCO, VCRO, oscillator

Procedia PDF Downloads 476
30693 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 267
30692 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation

Authors: S. Jalilzadeh, S. M. Mohseni Bonab

Abstract:

Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.

Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control

Procedia PDF Downloads 485
30691 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia

Authors: Farhan Beg, Raymond Moberly

Abstract:

The Indian subcontinent is facing a massive challenge with regards to energy security in member countries, to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts. The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Besides enabling energy security in the subcontinent, it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC-HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.

Keywords: super grid, wind and solar energy, high voltage direct current, electricity management, load flow analysis

Procedia PDF Downloads 428
30690 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 100
30689 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method

Procedia PDF Downloads 100
30688 Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft

Authors: Mansa Radhakrishnan, Anwar Ali, Muhammad Rizwan Mughal

Abstract:

Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement.

Keywords: small satellites, power subsystem, efficiency, MPPT

Procedia PDF Downloads 74
30687 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking

Authors: Soheib Fergani

Abstract:

This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.

Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation

Procedia PDF Downloads 65
30686 Low Voltage Ride through Capability Techniques for DFIG-Based Wind Turbines

Authors: Sherif O. Zain Elabideen, Ahmed A. Helal, Ibrahim F. El-Arabawy

Abstract:

Due to the drastic increase of the wind turbines installed capacity; the grid codes are increasing the restrictions aiming to treat the wind turbines like other conventional sources sooner. In this paper, an intensive review has been presented for different techniques used to add low voltage ride through capability to Doubly Fed Induction Generator (DFIG) wind turbine. A system model with 1.5 MW DFIG wind turbine is constructed and simulated using MATLAB/SIMULINK to explore the effectiveness of the reviewed techniques.

Keywords: DFIG, grid side converters, low voltage ride through, wind turbine

Procedia PDF Downloads 425
30685 Crack Propagation in Concrete Gravity Dam

Authors: Faramarz Khoshnoudian

Abstract:

A seismic stability assessment of the concrete gravity dam was performed. Initially (Phase 1), a linear response spectrum analysis was performed to verify the potential for crack formation. The result shows the possibility of developing cracks in the upstream face of the dam close to the lowest gallery, which were sufficiently long that the dam would not be stable following the earthquake. The results show the dam has potentially inadequate seismic and post-earthquake resistance and recommended an update of the stability analysis.

Keywords: crack propgation, concrete gravity dam, seismic, assesment

Procedia PDF Downloads 71
30684 Hybrid Approach for Controlling Inductive Load Fed by a Multicellular Converter by Using the Petri Nets

Authors: I. Bentchikou, A. Tlemcani, F. Boudjema, D. Boukhetala, N. Ould Cherchali

Abstract:

In this paper, hybrid approach is proposed to regulate the voltages of the floating capacitor multicell inverter and the current in the load. This structure makes it possible to ensure the distribution of the voltage stresses on the various low-voltage semiconductor components connected in series. And as the problem and to keep a constant voltage across the capacitors. Thus, it is necessary to ensure a distribution balanced voltages at the terminals of floating capacitors thanks to Algorithm develop for this, using the Petri nets. So we consider a three-cell converter represented as a hybrid system with eight modes of operation. The operating modes of the system are governed by the control reference voltage and a reference current. Finally, we present the results of the simulation with MATLAB/SIMULINK to illustrate the performances of this approach.

Keywords: hybrid control, floating condensers, multicellular converter, petri nets

Procedia PDF Downloads 127