Search results for: sliding mode observer
2185 Ratings of Hand Activity and Force Levels in Identical Hand-Intensive Work Tasks in Women and Men
Authors: Gunilla Dahlgren, Per Liv, Fredrik Öhberg, Lisbeth Slunga Järvholm, Mikael Forsman, Börje Rehn
Abstract:
Background: Accuracy of risk assessment tools in hand-repetitive work is important. This can support precision in the risk management process and for a sustainable working life for women and men equally. Musculoskeletal disorders, MSDs, from the hand, wrist, and forearm, are common in the working population. Women report a higher prevalence of MSDs in these regions. Objective: The objective of this study was to compare if women and men who performed the identical hand-intensive work task were rated equally using the Hand Activity Threshold Limit Value® (HA-TLV) when self-rated and observer-rated. Method: Fifty-six workers from eight companies participated, with various intensities in hand-repetitive work tasks. In total, 18 unique identical hand-intensive work tasks were executed in 28 pairs of a woman and a man. Hand activity and force levels were assessed. Each worker executed the work task for 15 minutes, which was also video recorded. Data was collected on workers who self-rated directly after the execution of the work task. Also, experienced observers performed ratings from videos of the same work tasks. For comparing means between women and men, paired samples t-tests were used. Results: The main results showed that there was no difference in self-ratings of hand activity level and force by women and men who executed the same work task. Further, there was no difference between observer ratings of hand activity level. However, the observer force ratings of women and men differed significantly (p=0.01). Conclusion: Hand activity and force levels are rated equally in women and men when self-rated, also by observers for hand activity. However, it is an observandum that observer force rating is rated higher for women and lower for men. This indicates the need of comparing force ratings with technical measures.Keywords: gender, equity, sex differences, repetitive strain injury, cumulative trauma disorders, upper extremity, exposure assessment, workload, health risk assessment, observation, psychophysics
Procedia PDF Downloads 1242184 A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror
Authors: Pinghe Wang
Abstract:
In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength.Keywords: fiber laser, dissipative soliton resonance, mode locking, tunable
Procedia PDF Downloads 2372183 The Capacity of Bolted and Screw Connections in Cold-Formed Steel Truss Structure through Analytical and Experimental Method
Authors: Slamet Setioboro, Rahutami Kusumaningsih, Prabowo Setiyawan, Danna Darmayadi
Abstract:
Designing of cold-formed steel capacity connections often based on the formula used for hot rolled steel. It makes the result of the actual capacity connection doesn’t accurate anymore. When the hot rolled steel receives the axial load pull, it will have different characteristics. As the result, there will be failure result when designing Truss structure made of hot rolled steel. This research aims to determine the capacity of actual cold-formed steel connections section which is loaded by the axial tensile force. It will test the appeal of the connection using bolt grafting tool and screw grafting tool. The variations of the test will be on the type of connection (single and double slap), the number of the connection tools and connection configuration. Bold and screw connections failure mode observed in this research are different each other. Failure mode of bolted connections includes sliding pivot plate, tearing at the plate and cutting of the bolt head. While the failure mode of screw connections includes tilting, hole-bearing, pull over and cutting the screw body out. This research was conducted using a laboratory test of HW2-600S Universal Testing Machine model with ASTM E8. It has done in the materials testing laboratory of Mechanical Engineering Department, Faculty of Engineering UNNES. The results obtained through the laboratory diversification towards theoretical calculations using the standards specified in ISO 7971-2013 Cold-Rolled Steel Structures. Based on the research, it can be concluded that the effective connection in receiving force strength is bolted connections neither single nor double plate. The method used is by applying 4 bolts through 2 parallel lines configuration. Furthermore, this connection deals with the consequences of holding the highest Pmaks, lowest failure risk and getting a little kind of mode of failure.Keywords: axial load, cold-formed steel, capacity connections, bolted connections, screw connections
Procedia PDF Downloads 2762182 Design of Robust and Intelligent Controller for Active Removal of Space Debris
Authors: Shabadini Sampath, Jinglang Feng
Abstract:
With huge kinetic energy, space debris poses a major threat to astronauts’ space activities and spacecraft in orbit if a collision happens. The active removal of space debris is required in order to avoid frequent collisions that would occur. In addition, the amount of space debris will increase uncontrollably, posing a threat to the safety of the entire space system. But the safe and reliable removal of large-scale space debris has been a huge challenge to date. While capturing and deorbiting space debris, the space manipulator has to achieve high control precision. However, due to uncertainties and unknown disturbances, there is difficulty in coordinating the control of the space manipulator. To address this challenge, this paper focuses on developing a robust and intelligent control algorithm that controls joint movement and restricts it on the sliding manifold by reducing uncertainties. A neural network adaptive sliding mode controller (NNASMC) is applied with the objective of finding the control law such that the joint motions of the space manipulator follow the given trajectory. A computed torque control (CTC) is an effective motion control strategy that is used in this paper for computing space manipulator arm torque to generate the required motion. Based on the Lyapunov stability theorem, the proposed intelligent controller NNASMC and CTC guarantees the robustness and global asymptotic stability of the closed-loop control system. Finally, the controllers used in the paper are modeled and simulated using MATLAB Simulink. The results are presented to prove the effectiveness of the proposed controller approach.Keywords: GNC, active removal of space debris, AI controllers, MatLabSimulink
Procedia PDF Downloads 1302181 A Study of Mode Choice Model Improvement Considering Age Grouping
Authors: Young-Hyun Seo, Hyunwoo Park, Dong-Kyu Kim, Seung-Young Kho
Abstract:
The purpose of this study is providing an improved mode choice model considering parameters including age grouping of prime-aged and old age. In this study, 2010 Household Travel Survey data were used and improper samples were removed through the analysis. Chosen alternative, date of birth, mode, origin code, destination code, departure time, and arrival time are considered from Household Travel Survey. By preprocessing data, travel time, travel cost, mode, and ratio of people aged 45 to 55 years, 55 to 65 years and over 65 years were calculated. After the manipulation, the mode choice model was constructed using LIMDEP by maximum likelihood estimation. A significance test was conducted for nine parameters, three age groups for three modes. Then the test was conducted again for the mode choice model with significant parameters, travel cost variable and travel time variable. As a result of the model estimation, as the age increases, the preference for the car decreases and the preference for the bus increases. This study is meaningful in that the individual and households characteristics are applied to the aggregate model.Keywords: age grouping, aging, mode choice model, multinomial logit model
Procedia PDF Downloads 3222180 Prediction of Conducted EMI Noise in a Converter
Abstract:
Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise
Procedia PDF Downloads 12062179 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings
Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun
Abstract:
Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building
Procedia PDF Downloads 1712178 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation
Procedia PDF Downloads 3662177 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 5602176 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 4982175 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 5232174 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics
Procedia PDF Downloads 1602173 Parallel Multisplitting Methods for Differential Systems
Authors: Malika El Kyal, Ahmed Machmoum
Abstract:
We prove the superlinear convergence of asynchronous multi-splitting methods applied to differential equations. This study is based on the technique of nested sets. It permits to specify kind of the convergence in the asynchronous mode.The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: parallel methods, asynchronous mode, multisplitting, ODE
Procedia PDF Downloads 5252172 Modal Density Influence on Modal Complexity Quantification in Dynamic Systems
Authors: Fabrizio Iezzi, Claudio Valente
Abstract:
The viscous damping in dynamic systems can be proportional or non-proportional. In the first case, the mode shapes are real whereas in the second case they are complex. From an engineering point of view, the complexity of the mode shapes is important in order to quantify the non-proportional damping. Different indices exist to provide estimates of the modal complexity. These indices are or not zero, depending whether the mode shapes are not or are complex. The modal density problem arises in the experimental identification when the dynamic systems have close modal frequencies. Depending on the entity of this closeness, the mode shapes can hold fictitious imaginary quantities that affect the values of the modal complexity indices. The results are the failing in the identification of the real or complex mode shapes and then of the proportional or non-proportional damping. The paper aims to show the influence of the modal density on the values of these indices in case of both proportional and non-proportional damping. Theoretical and pseudo-experimental solutions are compared to analyze the problem according to an appropriate mechanical system.Keywords: complex mode shapes, dynamic systems identification, modal density, non-proportional damping
Procedia PDF Downloads 3862171 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows
Authors: M. Yaqub Khan, Usman Shabbir
Abstract:
History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.Keywords: entropy, velocity shear, ion temperature gradient mode, drift
Procedia PDF Downloads 3852170 Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber
Authors: Qihang Zeng, Wei Xu, Ying Shen, Changyuan Yu
Abstract:
In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹.Keywords: curvature, four mode fiber, highly sensitive, modal interferometer
Procedia PDF Downloads 1902169 Reductive Control in the Management of Redundant Actuation
Authors: Mkhinini Maher, Knani Jilani
Abstract:
We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented. The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a -geometric- distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement. Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.Keywords: mobile robot, actuation, redundancy, omnidirectional, inverse pseudo moore-penrose, reductive control
Procedia PDF Downloads 5092168 A Variable Structural Control for a Flexible Lamina
Authors: Xuezhang Hou
Abstract:
A control problem of a flexible Lamina formulated by partial differential equations with viscoelastic boundary conditions is studied in this paper. The problem is written in standard form of linear infinite dimensional system in an appropriate energy Hilbert space. The semigroup approach of linear operators is adopted in investigating wellposedness of the closed loop system. A variable structural control for the system is proposed, and meanwhile an equivalent control method is applied to the thin plate system. A significant result on control theory that the thin plate can be approximated by ideal sliding mode in any accuracy in terms of semigroup approach is obtained.Keywords: partial differential equations, flexible lamina, variable structural control, semigroup of linear operators
Procedia PDF Downloads 842167 Seasonal Variation in Aerosols Characteristics over Ahmedabad
Authors: Devansh Desai, Chamandeep Kaur, Nirmal Kullu, George Christopher
Abstract:
Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad.Keywords: radiative forcing, aerosol optical depth, fine mode, coarse mode
Procedia PDF Downloads 4982166 Fast Terminal Synergetic Converter Control
Authors: Z. Bouchama, N. Essounbouli, A. Hamzaoui, M. N. Harmas
Abstract:
A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability.Keywords: dc-dc buck converter, synergetic control, finite time convergence, terminal synergetic control, fast terminal synergetic control, Lyapunov
Procedia PDF Downloads 4582165 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: Almontas Vilutis, Vytenis Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.Keywords: friction, composite, carbide, factors
Procedia PDF Downloads 822164 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations
Authors: Wieslaw Marszalek, Zdzislaw Trzaska
Abstract:
Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits
Procedia PDF Downloads 4702163 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds
Authors: Vinod Kumar, Surjit Angra
Abstract:
The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness
Procedia PDF Downloads 3922162 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation
Procedia PDF Downloads 3072161 VTOL-Fw Mode-Transitioning UAV Design and Analysis
Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu
Abstract:
In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.Keywords: aircraft design, linear analysis, mode transitioning control, UAV
Procedia PDF Downloads 3942160 Relative Intensity Noise of Vertical-Cavity Surface-Emitting Lasers Subject to Variable Polarization-Optical Feedback
Authors: Salam Nazhan Ahmed
Abstract:
Influence of variable polarization angle (θp) of optical feedback on the Relative Intensity Noise (RIN) of a Vertical-Cavity Surface-Emitting Laser (VCSEL) has been experimentally investigated. The RIN is a minimum at θp = 0° for the dominant polarization mode (XP), and at θp = 90° for the suppressed polarization mode (YP) of VCSEL. Furthermore, the RIN of the XP mode increases rapidly with increasing θp, while for the YP mode, it increases slightly to θp = 45° and decreases for angles greater than 45°.Keywords: lasers, vertical-cavity surface-emitting lasers, optical switching, optical polarization feedback, relative intensity noise
Procedia PDF Downloads 3882159 Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg
Authors: Philip Rose, Markus Linke, David Busquets
Abstract:
The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown.Keywords: ENF, fracture toughness, interlaminar, mode II
Procedia PDF Downloads 1352158 Design and Advancement of Hybrid Multilevel Inverter Interface with PhotoVoltaic
Authors: P.Kiruthika, K. Ramani
Abstract:
This paper presented the design and advancement of a single-phase 27-level Hybrid Multilevel DC-AC Converter interfacing with Photo Voltaic. In this context, the Multicarrier Pulse Width Modulation method can be implemented in 27-level Hybrid Multilevel Inverter for generating a switching pulse. Perturb & Observer algorithm can be used in the Maximum Power Point Tracking method for the Photo Voltaic system. By implementing Maximum Power Point Tracking with three separate solar panels as an input source to the 27-level Hybrid Multilevel Inverter. This proposed method can be simulated by using MATLAB/simulink. The result shown that the proposed method can achieve silky output wave forms, more flexibility in voltage range, and to reduce Total Harmonic Distortion in medium-voltage drives.Keywords: Multi Carrier Pulse Width Modulation Technique (MCPWM), Multi Level Inverter (MLI), Maximum Power Point Tracking (MPPT), Perturb and Observer (P&O)
Procedia PDF Downloads 5772157 A Two Tailed Secretary Problem with Multiple Criteria
Authors: Alaka Padhye, S. P. Kane
Abstract:
The following study considers some variations made to the secretary problem (SP). In a multiple criteria secretary problem (MCSP), the selection of a unit is based on two independent characteristics. The units that appear before an observer are known say N, the best rank of a unit being N. A unit is selected, if it is better with respect to either first or second or both the characteristics. When the number of units is large and due to constraints like time and cost, the observer might want to stop earlier instead of inspecting all the available units. Let the process terminate at r2th unit where r12156 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP
Procedia PDF Downloads 392