Search results for: panel data models
29247 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk
Authors: Heba Abdelmotaal, Magdy Abdel-Kader
Abstract:
Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management
Procedia PDF Downloads 43929246 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional
Procedia PDF Downloads 22929245 Dividends Smoothing in an Era of Unclaimed Dividends: A Panel Data Analysis in Nigeria
Authors: Apedzan Emmanuel Kighir
Abstract:
This research investigates dividends smoothing among non-financial companies trading on the Nigerian Stock Exchange in an era of unclaimed dividends from 2004 to 2013. There has been a raging controversy among Regulatory Authorities, Company Executives, Registrars of Companies, Shareholders and the general public regarding the increasing incidence of unclaimed dividends in Nigeria. The objective of this study is to find out if corporate earnings management through dividends smoothing is implicated in unclaimed dividends among Nigerian non-financial firms. The research used panel data and employed Generalized Method of Moment as method of analysis. The research finds evidence of dividends-smoothing in this era of unclaimed dividends in Nigeria. The research concludes that dividends-smoothing is a trigger and red flag for unclaimed dividends, an output of earnings management. If earnings management and hence unclaimed dividends in Nigeria is allowed to continue, it will lead to great consequences to the investors and corporate policy of government. It is believed that the research will assist investors and government in making informed decisions regarding dividends policy in Nigeria.Keywords: dividends smoothing, non financial companies, Nigerian stock exchange, unclaimed dividends, corporate earnings management
Procedia PDF Downloads 28029244 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites
Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan
Abstract:
All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite
Procedia PDF Downloads 10029243 Effect of Structural Change on Productivity Convergence: A Panel Unit Root Analysis
Authors: Amjad Naveed
Abstract:
This study analysed the role of structural change in the process of labour productivity convergence at country and regional levels. Many forms of structural changes occurred within the European Union (EU) countries i.e. variation in sectoral employment share, changes in demand for products, variations in trade patterns and advancement in technology which may have an influence on the process of convergence. Earlier studies on convergence have neglected the role of structural changes which can have resulted in different conclusion on the nature of convergence. The contribution of this study is to examine the role of structural change in testing labour productivity convergence at various levels. For the empirical purpose, the data of 19 EU countries, 259 regions and 6 industries is used for the period of 1991-2009. The results indicate that convergence varies across regional and country levels for different industries when considered the role of structural change.Keywords: labor produvitivty, convergence, structural change, panel unit root
Procedia PDF Downloads 28529242 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant
Authors: M. Wigwe, J. G Akpa, E. N Wami
Abstract:
Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol
Procedia PDF Downloads 49929241 A Review on Water Models of Surface Water Environment
Authors: Shahbaz G. Hassan
Abstract:
Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.Keywords: empirical models, mathematical, statistical, water quality
Procedia PDF Downloads 26529240 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 16829239 Analysis of Atomic Models in High School Physics Textbooks
Authors: Meng-Fei Cheng, Wei Fneg
Abstract:
New Taiwan high school standards emphasize employing scientific models and modeling practices in physics learning. However, to our knowledge. Few studies address how scientific models and modeling are approached in current science teaching, and they do not examine the views of scientific models portrayed in the textbooks. To explore the views of scientific models and modeling in textbooks, this study investigated the atomic unit in different textbook versions as an example and provided suggestions for modeling curriculum. This study adopted a quantitative analysis of qualitative data in the atomic units of four mainstream version of Taiwan high school physics textbooks. The models were further analyzed using five dimensions of the views of scientific models (nature of models, multiple models, purpose of the models, testing models, and changing models); each dimension had three levels (low, medium, high). Descriptive statistics were employed to compare the frequency of describing the five dimensions of the views of scientific models in the atomic unit to understand the emphasis of the views and to compare the frequency of the eight scientific models’ use to investigate the atomic model that was used most often in the textbooks. Descriptive statistics were further utilized to investigate the average levels of the five dimensions of the views of scientific models to examine whether the textbooks views were close to the scientific view. The average level of the five dimensions of the eight atomic models were also compared to examine whether the views of the eight atomic models were close to the scientific views. The results revealed the following three major findings from the atomic unit. (1) Among the five dimensions of the views of scientific models, the most portrayed dimension was the 'purpose of models,' and the least portrayed dimension was 'multiple models.' The most diverse view was the 'purpose of models,' and the most sophisticated scientific view was the 'nature of models.' The least sophisticated scientific view was 'multiple models.' (2) Among the eight atomic models, the most mentioned model was the atomic nucleus model, and the least mentioned model was the three states of matter. (3) Among the correlations between the five dimensions, the dimension of 'testing models' was highly related to the dimension of 'changing models.' In short, this study examined the views of scientific models based on the atomic units of physics textbooks to identify the emphasized and disregarded views in the textbooks. The findings suggest how future textbooks and curriculum can provide a thorough view of scientific models to enhance students' model-based learning.Keywords: atomic models, textbooks, science education, scientific model
Procedia PDF Downloads 15829238 Gluability of Bambusa balcooa and Bambusa vulgaris for Development of Laminated Panels
Authors: Daisy Biswas, Samar Kanti Bose, M. Mozaffar Hossain
Abstract:
The development of value added composite products from bamboo with the application of gluing technology can play a vital role in economic development and also in forest resource conservation of any country. In this study, the gluability of Bambusa balcooa and Bambusa vulgaris, two locally grown bamboo species of Bangladesh was assessed. As the culm wall thickness of bamboos decreases from bottom to top, a culm portion of up to 5.4 m and 3.6 m were used from the base of B. balcooa and B. vulgaris, respectively, to get rectangular strips of uniform thickness. The color of the B. vulgaris strips was yellowish brown and that of B. balcooa was reddish brown. The strips were treated in borax-boric, bleaching and carbonization for extending the service life of the laminates. The preservative treatments changed the color of the strips. Borax–boric acid treated strips were reddish brown. When bleached with hydrogen peroxide, the color of the strips turned into whitish yellow. Carbonization produced dark brownish strips having coffee flavor. Chemical constituents for untreated and treated strips were determined. B. vulgaris was more acidic than B. balcooa. Then the treated strips were used to develop three-layered bamboo laminated panel. Urea formaldehyde (UF) and polyvinyl acetate (PVA) were used as binder. The shear strength and abrasive resistance of the panel were evaluated. It was found that the shear strength of the UF-panel was higher than the PVA-panel for all treatments. Between the species, gluability of B. vulgaris was better and in some cases better than hardwood species. The abrasive resistance of B. balcooa is slightly higher than B. vulgaris; however, the latter was preferred as it showed well gluability. The panels could be used as structural panel, floor tiles, flat pack furniture component, and wall panel etc. However, further research on durability and creep behavior of the product in service condition is warranted.Keywords: Bambusa balcooa, Bambusa vulgaris, polyvinyl acetate, urea formaldehyde
Procedia PDF Downloads 26229237 Conceptual Design of Suction Cup Lifting System
Authors: Mohammed Aijaz
Abstract:
In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system.Keywords: designing, mechanical, engineering, suction
Procedia PDF Downloads 9629236 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46629235 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 19429234 Generation of Quasi-Measurement Data for On-Line Process Data Analysis
Authors: Hyun-Woo Cho
Abstract:
For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.Keywords: data analysis, diagnosis, monitoring, process data, quality control
Procedia PDF Downloads 48229233 Case-Based Options Counseling Panel To Supplement An Indiana Medical School’s Pre-Clinical Family Planning and Abortion Education Curriculum
Authors: Alexandra McKinzie, Lucy Brown, Sarah Komanapalli, Sarah Swiezy, Caitlin Bernard
Abstract:
Background: While 25% of US women will seek an abortion before age 45, targeted laws have led to a decline in abortion clinics, subsequently leaving 96% of Indiana counties and the 70% of Hoosier women residing in these counties without access to services they desperately need.1,2 Despite the need for a physician workforce that is educated and able to provide full-spectrum reproductive health care, few medical institutions have a standardized family planning and abortion pre-clinical curriculum. Methods: A Qualtrics survey was disseminated to students from Indiana University School of Medicine (IUSM) to evaluate (1) student interest in curriculum reform, (2) self-assessed preparedness to counsel on contraceptive and pregnancy options, and (3) preferred modality of instruction for family planning and abortion topics. Based on the pre-panel survey feedback, a case-based pregnancy options counseling panel will be implemented in the students’ pre-clinical, didactic course Endocrine, Reproductive, Musculoskeletal, Dermatologic Systems (ERMD) in February 2022. A Qualtrics post-panel survey will be disseminated to evaluate students’ perceived efficacy and quality of the panel, as well as their self-assessed preparedness to counsel on pregnancy options. Results: Participants in the pre-panel survey (n=303) were primarily female (61.72%) and White (74.43%). Across all class levels, many (60.80%) students expected to learn about family planning and abortion in their pre-clinical education. While most (84-88%) participants felt prepared to counsel about common, non-controversial pharmacotherapies (e.g. beta-blockers and diuretics), only 20% of students felt prepared to counsel on abortion options. Overall, 85.67% of students believed that IUSM should enhance its reproductive health coverage in pre-clinical, didactic courses. Traditional lectures, panels, and direct clinical exposure were the most popular instructional modalities. Expected Results: The authors predict that following the panel, students will indicate improved confidence in providing pregnancy options counseling. Additionally, students will provide constructive feedback on the structure and content of the panel for incorporation into future years’ curriculum. Conclusions: IUSM students overwhelmingly expressed interest in expanding their pre-clinical curriculum’s coverage of family planning and abortion topics. To specifically improve students’ self-assessed preparedness to provide pregnancy options counseling and address students’ self-cited learning gaps, a case-based provider panel session will be implemented in response to students’ preferred modality feedback.Keywords: options counseling, family planning, abortion, curriculum reform, case-based panel
Procedia PDF Downloads 14629232 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 829231 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models
Authors: R. Hellmuth
Abstract:
The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.Keywords: building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 11029230 An Overview of Domain Models of Urban Quantitative Analysis
Authors: Mohan Li
Abstract:
Nowadays, intelligent research technology is more and more important than traditional research methods in urban research work, and this proportion will greatly increase in the next few decades. Frequently such analyzing work cannot be carried without some software engineering knowledge. And here, domain models of urban research will be necessary when applying software engineering knowledge to urban work. In many urban plan practice projects, making rational models, feeding reliable data, and providing enough computation all make indispensable assistance in producing good urban planning. During the whole work process, domain models can optimize workflow design. At present, human beings have entered the era of big data. The amount of digital data generated by cities every day will increase at an exponential rate, and new data forms are constantly emerging. How to select a suitable data set from the massive amount of data, manage and process it has become an ability that more and more planners and urban researchers need to possess. This paper summarizes and makes predictions of the emergence of technologies and technological iterations that may affect urban research in the future, discover urban problems, and implement targeted sustainable urban strategies. They are summarized into seven major domain models. They are urban and rural regional domain model, urban ecological domain model, urban industry domain model, development dynamic domain model, urban social and cultural domain model, urban traffic domain model, and urban space domain model. These seven domain models can be used to guide the construction of systematic urban research topics and help researchers organize a series of intelligent analytical tools, such as Python, R, GIS, etc. These seven models make full use of quantitative spatial analysis, machine learning, and other technologies to achieve higher efficiency and accuracy in urban research, assisting people in making reasonable decisions.Keywords: big data, domain model, urban planning, urban quantitative analysis, machine learning, workflow design
Procedia PDF Downloads 17729229 Reliability Estimation of Bridge Structures with Updated Finite Element Models
Authors: Ekin Ozer
Abstract:
Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring
Procedia PDF Downloads 22329228 Analysis of the Impacts of Capital Goods' Import and Human Capital on the Economic Growth of the Sub Sahahra Africa: A Panel-ARDL Approach
Authors: Adeleke Omolade
Abstract:
The study investigated the impacts of capital goods' import and human capital on the economic growth of the Sub Sahahra Africa (SSA). 30 countries were used in the Panel- ARDL analysis where economic growth is the dependent variables and capital goods' import, human capital, primary export, investment exchange rate, among others were used as the independent variables. The result from the panel analysis indicates that capital goods' import will significantly and positively influence economic growth but human capital fails to have significant positive impact on economic growth of the SSA. Earlier the trend analysis and the correlation results have shown that there is a weak association between capital goods' import and human capital in the SSA. The results offer an expository analysis that reveals that the quality of the human capital is very germane to the effective utilization of capital goods' import for the purpose of growth in a primary goods' export dominated region like the SSA.Keywords: capital goods import, economic growth, human capital, Sub-Sahara Africa
Procedia PDF Downloads 23629227 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 59429226 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 18029225 High Speed Rail vs. Other Factors Affecting the Tourism Market in Italy
Authors: F. Pagliara, F. Mauriello
Abstract:
The objective of this paper is to investigate the relationship between the increase of accessibility brought by high speed rail (HSR) systems and the tourism market in Italy. The impacts of HSR projects on tourism can be quantified in different ways. In this manuscript, an empirical analysis has been carried out with the aid of a dataset containing information both on tourism and transport for 99 Italian provinces during the 2006-2016 period. Panel data regression models have been considered, since they allow modelling a wide variety of correlation patterns. Results show that HSR has an impact on the choice of a given destination for Italian tourists while the presence of a second level hub mainly affects foreign tourists. Attraction variables are also significant for both categories and the variables concerning security, such as number of crimes registered in a given destination, have a negative impact on the choice of a destination.Keywords: tourists, overnights, high speed rail, attractions, security
Procedia PDF Downloads 15629224 Phillips Curve Estimation in an Emerging Economy: Evidence from Sub-National Data of Indonesia
Authors: Harry Aginta
Abstract:
Using Phillips curve framework, this paper seeks for new empirical evidence on the relationship between inflation and output in a major emerging economy. By exploiting sub-national data, the contribution of this paper is threefold. First, it resolves the issue of using on-target national inflation rates that potentially causes weakening inflation-output nexus. This is very relevant for Indonesia as its central bank has been adopting inflation targeting framework based on national consumer price index (CPI) inflation. Second, the study tests the relevance of mining sector in output gap estimation. The test for mining sector is important to control for the effects of mining regulation and nominal effects of coal prices on real economic activities. Third, the paper applies panel econometric method by incorporating regional variation that help to improve model estimation. The results from this paper confirm the strong presence of Phillips curve in Indonesia. Positive output gap that reflects excess demand condition gives rise to the inflation rates. In addition, the elasticity of output gap is higher if the mining sector is excluded from output gap estimation. In addition to inflation adaptation, the dynamics of exchange rate and international commodity price are also found to affect inflation significantly. The results are robust to the alternative measurement of output gapKeywords: Phillips curve, inflation, Indonesia, panel data
Procedia PDF Downloads 12229223 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System
Authors: Zainab Almukhtar, Adel Merabet
Abstract:
In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.Keywords: control system, error, solar panel, MPPT tracking
Procedia PDF Downloads 28329222 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13329221 Examining the Dynamics of FDI Inflows in Both BRICS and G7 Economies: Dissecting the Influence of Geopolitical Risk versus Economic Policy Uncertainty
Authors: Adelakun O. Johnson
Abstract:
The quest to mitigate the probable adverse effects of geopolitical risk on FDI inflows tends to result in more frequent changes in economic policies and, as a result, heightened policy uncertainty. In this regard, we extend the literature on the dynamics of FDI inflows to include the hypothesis of the possibility of geopolitical risk escalating the adverse effects of economic policy uncertainty on FDI inflows. To test the robustness of this hypothesis, we use the cases of different economic groups characterized by different levels of economic development and varying degrees of FDI confidence. Employing an ARDL-based dynamic panel data model that accounts for both non-stationarity and heterogeneity effects, we show result that suggests GPR and EPU retard the inflows of FDI in both economies but mainly in the short-run situation. In the long run, however, higher EPU not attributed to GPR is likely to boost the inflows of FDI rather than retarding, at least in the case of the G7 economy.Keywords: FDI inflows, geopolitical risk, economic policy uncertainty, panel ARDL model
Procedia PDF Downloads 2529220 The Grit in the Glamour: A Qualitative Study of the Well-Being of Fashion Models
Authors: Emily Fortune Super, Ameerah Khadaroo, Aurore Bardey
Abstract:
Fashion models are often assumed to have a glamorous job with limited consideration for their well-being. This study aims to assess the well-being of models through semi-structured interviews with six professional fashion models and six industry professionals. Thematic analysis revealed that although models experienced improved self-confidence, they also reported heightened anxiety levels, body image issues, and the negative influence of modelling on their self-esteem. By contrast, industry professionals reported no or minimum concerns about anxious behaviours or the general well-being of fashion models. Being resilient as a model was perceived as an essential attribute to have by both models and industry professionals as they face recurrent rejection in this industry. These results demonstrate a significant gap in the current understanding of the well-being of fashion models between industry professionals and the models themselves. Findings imply that there is an inherent need for change in the modelling industry to promote and enhance their well-being.Keywords: body image, fashion industry, modelling, well-being
Procedia PDF Downloads 17229219 Efficient Principal Components Estimation of Large Factor Models
Authors: Rachida Ouysse
Abstract:
This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting
Procedia PDF Downloads 15029218 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 203