Search results for: open dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4168

Search results for: open dataset

3988 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 81
3987 Management of Tibial Bone Defects Following Grade Three Injury in Adults

Authors: Rajendra Kumar Kanojia

Abstract:

Background; Massive bone gaps are common following road side accidents and injury to the tibia, specially open grade three fractures. It has been seen that the diaphyseal fractures in the tibia are prone to non-union, there are certain reasons known very well, like less soft tissues around the lower third tibia, less vascularity, less options of fixation of the fractures after trauma and prolonged surgical time, operation theatre time and special surgical means. Aim of study; To know the suitability of the ilizarov ring fixators in staged treatment of the fracture of the both bones leg, including tibia, we wish to see the role of ilizarov in management of open grade three fractures which have been operated and debrided, for getting the length use of ilizaorv ring in a tertiary canter is the aim of the study.

Keywords: open fracture, staged management, ilizarov, bone grafting, lengthening

Procedia PDF Downloads 305
3986 Evaluation of Australian Open Banking Regulation: Balancing Customer Data Privacy and Innovation

Authors: Suman Podder

Abstract:

As Australian ‘Open Banking’ allows customers to share their financial data with accredited Third-Party Providers (‘TPPs’), it is necessary to evaluate whether the regulators have achieved the balance between protecting customer data privacy and promoting data-related innovation. Recognising the need to increase customers’ influence on their own data, and the benefits of data-related innovation, the Australian Government introduced ‘Consumer Data Right’ (‘CDR’) to the banking sector through Open Banking regulation. Under Open Banking, TPPs can access customers’ banking data that allows the TPPs to tailor their products and services to meet customer needs at a more competitive price. This facilitated access and use of customer data will promote innovation by providing opportunities for new products and business models to emerge and grow. However, the success of Open Banking depends on the willingness of the customers to share their data, so the regulators have augmented the protection of data by introducing new privacy safeguards to instill confidence and trust in the system. The dilemma in policymaking is that, on the one hand, lenient data privacy laws will help the flow of information, but at the risk of individuals’ loss of privacy, on the other hand, stringent laws that adequately protect privacy may dissuade innovation. Using theoretical and doctrinal methods, this paper examines whether the privacy safeguards under Open Banking will add to the compliance burden of the participating financial institutions, resulting in the undesirable effect of stifling other policy objectives such as innovation. The contribution of this research is three-fold. In the emerging field of customer data sharing, this research is one of the few academic studies on the objectives and impact of Open Banking in the Australian context. Additionally, Open Banking is still in the early stages of implementation, so this research traces the evolution of Open Banking through policy debates regarding the desirability of customer data-sharing. Finally, the research focuses not only on the customers’ data privacy and juxtaposes it with another important objective of promoting innovation, but it also highlights the critical issues facing the data-sharing regime. This paper argues that while it is challenging to develop a regulatory framework for protecting data privacy without impeding innovation and jeopardising yet unknown opportunities, data privacy and innovation promote different aspects of customer welfare. This paper concludes that if a regulation is appropriately designed and implemented, the benefits of data-sharing will outweigh the cost of compliance with the CDR.

Keywords: consumer data right, innovation, open banking, privacy safeguards

Procedia PDF Downloads 139
3985 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease

Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta

Abstract:

Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.

Keywords: parkinson, gait, feature selection, bat algorithm

Procedia PDF Downloads 544
3984 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 410
3983 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment

Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha

Abstract:

When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.

Keywords: contract risk assessment, NLP, transfer learning, question answering

Procedia PDF Downloads 129
3982 Problems in Computational Phylogenetics: The Germano-Italo-Celtic Clade

Authors: Laura Mclean

Abstract:

A recurring point of interest in computational phylogenetic analysis of Indo-European family trees is the inference of a Germano-Italo-Celtic clade in some versions of the trees produced. The presence of this clade in the models is intriguing as there is little evidence for innovations shared among Germanic, Italic, and Celtic, the evidence generally used in the traditional method to construct a subgroup. One source of this unexpected outcome could be the input to the models. The datasets in the various models used so far, for the most part, take as their basis the Swadesh list, a list compiled by Morris Swadesh and then revised several times, containing up to 207 words that he believed were resistant to change among languages. The judgments made by Swadesh for this list, however, were subjective and based on his intuition rather than rigorous analysis. Some scholars used the Swadesh 200 list as the basis for their Indo-European dataset and made cognacy judgements for each of the words on the list. Another dataset is largely based on the Swadesh 207 list as well although the authors include additional lexical and non-lexical data, and they implement ‘split coding’ to deal with cases of polymorphic characters. A different team of scholars uses a different dataset, IECoR, which combines several different lists, one of which is the Swadesh 200 list. In fact, the Swadesh list is used in some form in every study surveyed and each dataset has three words that, when they are coded as cognates, seemingly contribute to the inference of a Germano-Italo-Celtic clade which could happen due to these clades sharing three words among only themselves. These three words are ‘fish’, ‘flower’, and ‘man’ (in the case of ‘man’, one dataset includes Lithuanian in the cognacy coding and removes the word ‘man’ from the screened data). This collection of cognates shared among Germanic, Italic, and Celtic that were deemed important enough to be included on the Swadesh list, without the ability to account for possible reasons for shared cognates that are not shared innovations, gives an impression of affinity between the Germanic, Celtic, and Italic branches without adequate methodological support. However, by changing how cognacy is defined (ie. root cognates, borrowings vs inherited cognates etc.), we will be able to identify whether these three cognates are significant enough to infer a clade for Germanic, Celtic, and Italic. This paper examines the question of what definition of cognacy should be used for phylogenetic datasets by examining the Germano-Italo-Celtic clade as a case study and offers insights into the reconstruction of a Germano-Italo-Celtic clade.

Keywords: historical, computational, Italo-Celtic, Germanic

Procedia PDF Downloads 49
3981 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 86
3980 Focus Group Study Exploring Researchers Perspective on Open Science Policy

Authors: E. T. Svahn

Abstract:

Knowledge about the factors that influence the exchange between research and society is of the utmost importance for developing collaboration between different actors, especially in future science policy development and the creation of support structures for researchers. Among other things, how researchers look at the surrounding open science policy environment and what conditions and attitudes they have for interacting with it. This paper examines the Finnish researchers' attitudes towards open science policies in 2020. Open science is an integrated part of researchers' daily lives and supports not only the effectiveness of research outputs but also the quality of research. Open science policy in ideal situation is seen as a supporting structure that enables the exchange between research and society, but in other situation, it can end up being red tape generating obstacles and hindering possibilities of making science in an efficient way. Results of this study were carried out through focus group interviews. This qualitative research method was selected because it aims to understand the phenomenon under study. In addition, focus group interviews produce diverse and rich material that would not be available with other research methods. Focus group interviews have well-established applications in social science, especially in understanding the perspectives and experiences of research subjects. In this study, focus groups were used in studying the mindset and actions of researchers. Each group's size was between 4-10 people, and the aim was to bring out different perspectives on the subject. The interviewer enabled the presentation of different perceptions and opinions, and the focus group interviews were recorded and written as text. The material was analysed using grounded theory method. The results are presented as thematic areas, theoretical model, and as direct quotations. Attitudes towards open science policy can vary greatly depending on the research area. This study shows that the open science policy demands in medicine, technology, and natural sciences compared to social sciences, educational sciences, and the humanities, varies somewhat. The variation in attitudes between different research areas can thus be largely explained by the fact that the research output and ethical code vary significantly between certain subjects. This study aims to increase understanding of the nuances to what extent open science policies should be tailored for different disciplines and research areas.

Keywords: focus group interview, grounded theory, open science policy, science policy

Procedia PDF Downloads 154
3979 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD

Procedia PDF Downloads 234
3978 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: knowledge management systems, ontologies, semantic web, open educational resources

Procedia PDF Downloads 498
3977 A General Strategy for Noise Assessment in Open Mining Industries

Authors: Diego Mauricio Murillo Gomez, Enney Leon Gonzalez Ramirez, Hugo Piedrahita, Jairo Yate

Abstract:

This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited.

Keywords: environmental noise, noise control, occupational noise, open mining

Procedia PDF Downloads 267
3976 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images

Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal

Abstract:

The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.

Keywords: LiDAR datasets, DSM, DTM, 3D building models

Procedia PDF Downloads 320
3975 Comparison Between Conventional Ultrafiltration Combined with Modified Ultrafiltration and Conventional Ultrafiltration Only for Adult Open-heart Surgery: Perspective from Systemic Inflammation, Vascular Resistance, and Cardiac Index

Authors: Ratna Farida Soenarto, Anas Alatas, Made Ryan Kharmayani

Abstract:

Background: Conventional ultrafiltration (CUF) system was shown to be helpful in reducing anti-inflammatory mediators for patients who underwent open heart surgery. Additionally, modified ultrafiltration (MUF) has been shown to reduce anti-inflammatory mediators further while reducing interstitial fluid volume at the same time. However, there has been minimal data concerning the efficacy of combining both ultrafiltration methods. This study aims to compare inflammation marker, vascular resistance, and cardiac index on CUF+MUF patients with CUF only patients undergoing open heart surgery. Method: This is a single blind randomized controlled trial on patients undergoing open heart surgery between June 2021 - October 2021 in CiptoMangunkusumo National Referral Hospital and Jakarta Heart Hospital. Patients wererandomized using block randomization into modified ultrafiltration following conventional ultrafiltration (CUF+MUF) and conventional ultrafiltration (CUF) only. Outcome assessed in this study were 24-hoursinterleukin-6 levels, systemic vascular resistance (SVR), pulmonary vascular resistance (PVR), and cardiac index. Results: A total of 38patients were included (19 CUF+MUF and 19 CUF subjects). There was no difference in postoperative IL-6 level between groups (p > 0.05).No difference in PVR was observed between groups.Higher difference in SVR was observed in CUF+MUF group (-646 vs. -261dyn/s/cm-5, p < 0.05). Higher cardiac index was observed on CUF+MUF group (0.93 vs. 0.48, p < 0.05). Conclusion: Patients undergoing open heart surgery with modified ultrafiltration following conventional ultrafiltration had similar systemic inflammatory response and better cardiac response than those having conventional ultrafiltration.

Keywords: open-heart, CUF, MUF, SVR, PVR, IL-6

Procedia PDF Downloads 153
3974 From Customer Innovations to Manufactured Products: A Project Outlook

Authors: M. Holle, M. Roth, M. R. Gürtler, U. Lindemann

Abstract:

This paper gives insights into the research project "InnoCyFer" (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based open innovation-platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products.

Keywords: customer individual product design, innovation networks, open innovation, open innovation platform, toolkit

Procedia PDF Downloads 314
3973 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 104
3972 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: open channel flow, Reynolds Number, roughness, turbulence

Procedia PDF Downloads 398
3971 Women's Parliamentary Representation in Uganda: A Relative Analysis of the Pathways of Women on the Open vs. Affirmative Action Seat

Authors: Doreen Chemutai

Abstract:

While women's parliamentary representation has increased over the years, most women contest the affirmative action seat (A.A). There is a lack of knowledge on why women prefer the affirmative seat vis- a- vis the open seat. This study argues that comparing women's path on the reserved and open seat to parliamentary representation enables us to pass judgment on why this trend continues. This paper provides a narrative analysis of women members of parliament's (MPs) trajectory in the open seat and Affirmative Action seat to parliamentary representation. Purposive sampling was used to select participants from the Northern Uganda districts of Kitgum, Pader, Oyam, Agago, and Gulu. The eight women MPs chosen for the study completed in-depth interviews exploring their qualifications, careers, and experiences before joining the political office, their party affiliation, and the kind of seat they currently occupy in the 10th parliament. Findings revealed similarities between women on the open and reserved to include; women generally irrespective of the seat they choose to contest for find it difficult to win elections because voters doubt women's effectiveness as leaders. All women as incumbents find it difficult to be re-elected because their evaluation is harsher than that for men. Findings also revealed that women representatives are motivated by their personal lived experiences, community work, educational leadership, and local leadership. The study establishes that the popularity of the party in a given geographical location and the opponents' quality will determine the success of the parliamentary candidate in question irrespective of whether one is contesting on the open or Affirmative seat. However, the study revealed differences between MPs' experiences in the quest for the parliamentary seat, females on the open seat are subjected to gender discrimination in elections by party leadership, stereotyped, and are victims of propaganda in the initial contesting stages. Women who win elections in the open seat have to be superior to their male opponents. In other circumstances where a woman emerges successful, she may be voted for due to other reasons beyond capability, such as physical appearance or sociability. On the other hand, MPs' revelations on affirmative action seats show that the political terrain is smoother despite larger constituencies. Findings show that women on the Affirmative Action seat do not move to the open seat because of the comfort associated with the seat and maintain consistency, since the constituencies doubt the motives of representatives who change from one seat to another. The study concludes that women MPs who contest on the open seat are likely to suffer structural barriers such as gender discrimination and political recruitment bias instead of women on the affirmative seat. This explains why the majority of women contest on the affirmative seat.

Keywords: affirmative action seats, open seats, parliamentary representation, pathways

Procedia PDF Downloads 154
3970 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 188
3969 Differences Choosing Closed Approach or Open Approach in Rhinoplasty Outcomes

Authors: Alessandro Marano

Abstract:

Aim: The author describes a strategy for choosing between two different rhinoplasty approaches for outcomes treatment. Methods: Series of the case study. There are advantages and disadvantages on both approaches for rhinoplasty. On the side of the open approach, we are be able to better manage the techniques for shaping and restoring nasal structures in rhinoplasty outcomes; on the other side, the closed approach requires more practice and experience to achieve good results. Results: Author’s choice is the closed approach on rhinoplasty outcomes. Anyway, the open approach is most commonly preferred due to superior management and better vision on nasal structures. Conclusions: Both approaches are valid for the treatment of rhinoplasty outcomes, author's preferred approach is closed, with minimally invasive modification focused on restoring outcomes in nasal function and aesthetics.

Keywords: rhinoplasty, aesthetic, face, outcomes

Procedia PDF Downloads 109
3968 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah

Authors: N. Bolong, J. Makinda, I. Saad

Abstract:

Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via hands-on by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.

Keywords: engineering education, open-ended laboratory, environmental engineering lab

Procedia PDF Downloads 316
3967 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 145
3966 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course

Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu

Abstract:

Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.

Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects

Procedia PDF Downloads 262
3965 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 353
3964 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 9
3963 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 180
3962 The Use of Hydrocolloid Dressing in the Management of Open Wounds in Big Cats

Authors: Catherine Portelli

Abstract:

Felines, such as Panthera tigris, Panthera leo and Puma concolor, have become common residents in animal parks and zoos. They often sustain injuries from other felines within the same, or adjacent enclosures and from playing with items of enrichment and structures of the enclosure itself. These open wounds, and their treatments, are often challenging in the veterinary practice, where feline-specific studies are lacking. This study is based on the author’s clinical experience gained while working at local animal parks in the past five years, and current evidence of hydrocolloid dressing applied to other species. Hydrocolloid dressing is used for secondary healing of chronic and acute wounds, where there is a considerable amount of tissue loss. The patients included in this study were sedated using medetomidine and ketamine every three to four days, for wound treatment and bandage change. Comparative studies of different techniques of open wound management will improve the healing process of exotic felines in the future by decreasing the time of recovery and incidence of other complications. Such studies will also aid with treatment of injuries sustained in wild felines, such as trap and bite wounds, found in natural conservation areas and wild animal sanctuaries.

Keywords: felines, hydrocolloid dressing, open wound, secondary healing

Procedia PDF Downloads 100
3961 The Role of Semi Open Spaces on Exploitation of Wind-Driven Ventilation

Authors: Paria Saadatjoo

Abstract:

Given that HVAC systems are the main sources of carbon dioxide producers, developing ways to reduce dependence on these systems and making use of natural resources is too important to achieve environmentally friendly buildings. A major part of building potential in terms of using natural energy resources depends on its physical features. So architectural decisions at the first step of the design process can influence the building's energy efficiency significantly. Implementation of semi-open spaces into solid apartment blocks inspired by the concept of courtyard in ancient buildings as a passive cooling strategy is currently enjoying great popularity. However, the analysis of these features and their effect on wind behavior at initial design steps is a difficult task for architects. The main objective of this research was to investigate the influence of semi-open to closed space ratio on airflow patterns in and around midrise buildings and introduce the best ratio in terms of harnessing natural ventilation. The main strategy of this paper was semi-experimental, and the research methodology was descriptive statistics. At the first step, by changing the terrace area, 6 models with various open to closed space ratios were created. These forms were then transferred to CFD software to calculate the primary indicators of natural ventilation potentials such as wind force coefficient, air flow rate, age of air distribution, etc. Investigations indicated that modifying the terrace area and, in other words, the open to closed space ratio influenced the wind force coefficient, airflow rate, and age of air distribution.

Keywords: natural ventilation, wind, midrise, open space, energy

Procedia PDF Downloads 170
3960 Extended Multi-Modulus Divider for Open Loop Fractional Dividers and Fractional Multiplying Delay Locked Loops

Authors: Muhammad Swilam

Abstract:

Solutions for the wrong division problem of the Extended Multi-Modulus Divider (EMMD) that occurs during modulus extension (i.e. switching the modulus value between two different ranges of division ratios), in open loop fractional dividers and fractional multiplying delay locked loop, is proposed. A detailed study for the MMD with Sigma-Delta is also presented. Moreover, extensive simulations for the divider are presented to ensure and verify its functionality and compared with the conventional dividers.

Keywords: extended multi-modulus divider (EMMD), fractional multiplying delay locked loop, open loop fractional divider, sigma delta modulator

Procedia PDF Downloads 484
3959 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset

Authors: Assel Jaxylykova, Alexnder Pak

Abstract:

This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.

Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics

Procedia PDF Downloads 44