Search results for: live video streaming system
19140 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 47419139 Speech Perception by Video Hosting Services Actors: Urban Planning Conflicts
Authors: M. Pilgun
Abstract:
The report presents the results of a study of the specifics of speech perception by actors of video hosting services on the material of urban planning conflicts. To analyze the content, the multimodal approach using neural network technologies is employed. Analysis of word associations and associative networks of relevant stimulus revealed the evaluative reactions of the actors. Analysis of the data identified key topics that generated negative and positive perceptions from the participants. The calculation of social stress and social well-being indices based on user-generated content made it possible to build a rating of road transport construction objects according to the degree of negative and positive perception by actors.Keywords: social media, speech perception, video hosting, networks
Procedia PDF Downloads 14719138 Automated Tracking and Statistics of Vehicles at the Signalized Intersection
Authors: Qiang Zhang, Xiaojian Hu1
Abstract:
Intersection is the place where vehicles and pedestrians must pass through, turn and evacuate. Obtaining the motion data of vehicles near the intersection is of great significance for transportation research. Since there are usually many targets and there are more conflicts between targets, this makes it difficult to obtain vehicle motion parameters in traffic videos of intersections. According to the characteristics of traffic videos, this paper applies video technology to realize the automated track, count and trajectory extraction of vehicles to collect traffic data by roadside surveillance cameras installed near the intersections. Based on the video recognition method, the vehicles in each lane near the intersection are tracked with extracting trajectory and counted respectively in various degrees of occlusion and visibility. The performances are compared with current recognized CPU-based algorithms of real-time tracking-by-detection. The speed of the presented system is higher than the others and the system has a better real-time performance. The accuracy of direction has reached about 94.99% on average, and the accuracy of classification and statistics has reached about 75.12% on average.Keywords: tracking and statistics, vehicle, signalized intersection, motion parameter, trajectory
Procedia PDF Downloads 22119137 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 14119136 Engaging Mature Learners through Video Case Studies
Authors: Jacqueline Mary Jepson
Abstract:
This article provides a case study centred on the development of 13 video episodes which have been created to enhance student engagement with a post graduate online course in Project Management. The student group was unique as their online course needed to provide for asynchronistic learning and an adult learning pedagogy. In addition, students had come from a wide range professional backgrounds, with some having no Project Management experience, while others had 20 years or more. Students had to gain an understanding of an advanced body of knowledge and the course needed to achieve the academic requirements to qualify individuals to apply their learning in a range of contexts for professional practice and scholarship. To achieve this, a 13 episode case study was developed along with supportive learning materials based on the relocation of a zoo. This unique project provided a learning environment where the project could evolve over each video episode demonstrating the application of Project Management methodology which was then tied into the learning outcomes for the course and the assessment tasks. Discussion forums provided a way for students to converse and demonstrate their own understanding of content and how Project Management methodology can be applied.Keywords: project management, adult learning, video case study, asynchronistic education
Procedia PDF Downloads 33819135 Droplet Impact on a High Frequency Vibrating Surface
Authors: Maryam Ebrahimiazar, Parsia Mohammadshahi, Amirreza Amighi, Nasser Ashgriz
Abstract:
Ultrasonic atomization is used to generate micron size aerosols. In this work, the aerosol formation by the atomization of a parent droplet dripping from a capillary needle onto the surface of a Teflon coated piezoelectric vibrating at 2.5 MHz is studied, and different steps of atomization are categorized. After the droplet impacts on the piezoelectric, surface acoustic streaming deforms the droplet into a fountain shape. This fountain soon collapses and forms a liquid layer. The breakup of the liquid layer results in the generation of both large ( 100 microns) and small drops (few microns). Next, the residual drops from the liquid layer start to be atomized to generate few micron size droplets. The high velocity and explosive aerosol formation in this step are better explained in terms of cavitation theory. However, the combination of both capillary waves and cavitation theory seem to be responsible for few-micron droplet generation. The current study focuses on both qualitative and quantitative aspects of fountain formation for both ethyl-alcohol and water. Even though the general steps of atomization are the same for both liquids, the quantitative results indicate that some noticeable differences lie between them.Keywords: droplet breakup, ultrasonic atomization, acoustic streaming, droplet oscillation
Procedia PDF Downloads 17919134 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 1119133 Physics Recitations for College Physics Courses Using Breakout Rooms during COVID Pandemic
Authors: Pratheesh Jakkala
Abstract:
This paper addresses the use of breakout sessions to conduct successful weekly physics recitations for College Physics I and II at a large University in remote teaching method during COVID-19 pandemic. All breakout sessions are synchronous, conducted live, and handled by teaching assistants. A two-prong approach is used to maintain the integrity of recitations. Three different conference platforms WebEx, Zoom, and Canvas conferences, were tested, and BigBlue button using Canvas was adopted. The results and experiences of all three learning platforms are presented in this paper. Recitation questions were assigned on WebAssign learning platform and a standard five-question template developed by the instructor was used for group discussions and active peer-peer engagement. Breakout sessions feature of BigBlueButton in Canvas conferences was successfully implemented. Each breakout session consists of a team of 4 students. An online whiteboard, chat window options were used for live teamwork. Student peer-peer interactions, Teaching Assistants’ interaction with students were video and audio recorded. A total of 72 students in College Physics II and 55 students in College Physics I was enrolled. 82% of students agreed that method under study is better than previous methods. The study addressed the quality of student teamwork, student attitude towards problem-solving, and student performance in the exams.Keywords: recitations, breakout rooms, online learning platforms, COVID pandemic
Procedia PDF Downloads 11019132 Design of a Computer Vision Based Exercise Video Game for Senior Citizens
Abstract:
There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.Keywords: about computer vision, video games, gerontology technology, caregiving
Procedia PDF Downloads 8119131 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 14119130 Remembering Route in an Unfamiliar Homogenous Environment
Authors: Ahmed Sameer, Braj Bhushan
Abstract:
The objective of our study was to compare two techniques (no landmark vs imaginary landmark) of remembering route while traversing in an unfamiliar homogenous environment. We used two videos each having nine identical turns with no landmarks. In the first video participant was required to remember the sequence of turns. In the second video participant was required to imagine a landmark at each turn and associate the turn with it. In both the task the participant was asked to recall the sequence of turns as it appeared in the video. Results showed that performance in the first condition i.e. without use of landmarks was better than imaginary landmark condition. The difference, however, became significant when the participant were tested again about 30 minutes later though performance was still better in no-landmark condition. The finding is surprising given the past research in memory and is explained in terms of cognitive factors such as mental workload.Keywords: wayfinding, landmarks, unfamiliar environment, cognitive psychology
Procedia PDF Downloads 47619129 Dynamic Foot Pressure Measurement System Using Optical Sensors
Authors: Tanapon Keatsamarn, Chuchart Pintavirooj
Abstract:
Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.Keywords: foot, foot pressure, image processing, optical sensors
Procedia PDF Downloads 24819128 Gender Difference in Social Interaction Skills of Autism Using Token Economy and Video Modelling Strategies
Authors: Olusola Akintunde Adediran
Abstract:
This study examined differential effect of Gender difference in social interaction skill of pupils with autism using token economy and video modeling as intervention strategies. A pretest, posttest, control group, quasi-experimental research design was adopted in the study. 17 participants (11 males and 6 females) were selected purposively from 5 centres in Ibadan and randomized into three groups (token economy, video modeling and control groups). Two instruments were used in the study; Autism Spectrum Rating Scale (ASRS) for 299.00 Autistic Disorder (r = 0.82) and Children’s Self-report Social Skill Scale (CS4) (r= 0.93). A descriptive statistics was used to analyse the participants social interaction data based on intervention and gender, while inferential statistics of analysis of covariance (ANCOVA) and scheffe post-hoc measure was used to anlayse three null hypotheses tested at 0.05 level of significance. The results obtained indicated that there was a significant main effect of treatment on social interaction of participants, but there was no significant of main effect of gender on the social interaction of participants, hence, (F(2,14) = .741; p > .05, eta = .050). Lastly, there was no significant interaction effect of treatment and gender of the participants, hence (F(2,10) = 2.177; p > .05, eta 2 = 202). The study has contributed to the frontiers of knowledge by establishing that social interaction of autism is attainable when token economy and video modelling are used as treatment intervention, hence, they should be adopted by the teachers, curriculum planners and other stakeholders.Keywords: social interaction, token economy, video modelling, autism, gender
Procedia PDF Downloads 13919127 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 65719126 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology
Authors: Weinian Wang, Joseph C. Chen
Abstract:
The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.Keywords: CNC milling operation, CNC turning operation, surface roughness, Taguchi parameter design
Procedia PDF Downloads 17619125 University Clusters Using ICT for Teaching and Learning
Authors: M. Roberts Masillamani
Abstract:
There is a phenomenal difference, as regard to the teaching methodology adopted at the urban and the rural area colleges. However, bright and talented student may be from rural back ground even. But there is huge dearth of the digitization in the rural areas and lesser developed countries. Today’s students need new skills to compete and successful in the future. Education should be combination of practical, intellectual, and social skills. What does this mean for rural classrooms and how can it be achieved. Rural colleges are not able to hire the best resources, since the best teacher’s aim is to move towards the city. If city is provided everywhere, then there will be no rural area. This is possible by forming university clusters (UC). The University cluster is a group of renowned and accredited universities coming together to bridge this dearth. The UC will deliver the live lectures and allow the students’ from remote areas to actively participate in the classroom. This paper tries to present a plan of action of providing a better live classroom teaching and learning system from the city to the rural and the lesser developed countries. This paper titled “University Clusters using ICT for teaching and learning” provides a true concept of opening live digital classroom windows for rural colleges, where resources are not available, thus reducing the digital divide. This is different from pod casting a lecture or distance learning and eLearning. The live lecture can be streamed through digital equipment to another classroom. The rural students can collaborate with their peers and critiques, be assessed, collect information, acquire different techniques in assessment and learning process. This system will benefit rural students and teachers and develop socio economic status. This will also will increase the degree of confidence of the Rural students and teachers. Thus bringing about the concept of ‘Train the Trainee’ in reality. An educational university cloud for each cluster will be built remote infrastructure facilities (RIF) for the above program. The users may be informed, about the available lecture schedules, through the RIF service. RIF with an educational cloud can be set by the universities under one cluster. This paper talks a little more about University clusters and the methodology to be adopted as well as some extended features like, tutorial classes, library grids, remote laboratory login, research and development.Keywords: lesser developed countries, digital divide, digital learning, education, e-learning, ICT, library grids, live classroom windows, RIF, rural, university clusters and urban
Procedia PDF Downloads 47219124 Authentication Based on Hand Movement by Low Dimensional Space Representation
Authors: Reut Lanyado, David Mendlovic
Abstract:
Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.Keywords: authentication, feature extraction, hand recognition, security, signal processing
Procedia PDF Downloads 12819123 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 19519122 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease
Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg
Abstract:
Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance
Procedia PDF Downloads 44719121 Development of Detachable Brake System for Moving Apparatus
Authors: Bong-Keun Jung, Jung-Yeon Kim
Abstract:
The aim of this study was to investigate usability of detachable brake system for moving apparatus such as baby strollers, manual wheelchairs or walkers. The current brake system was proposed to prevent that moving apparatus slip on sloping roadways when unattended as current built-in manual brake for the moving apparatus is not able to react for the matter. The developed detachable brake system enacted by force sensor on the hand grip showed the possibilities to prevent unexpected accident due to uncontrolled stroller or wheelchair use. To investigate the quality and acceptance of this new technology, standard stroller testbed was built and the use of moving apparatus which attached to the proposed brake system was analyzed through video recording. Additional usability questionnaires were given to test users for measuring usability issues.Keywords: brake system, stroller, wheelchair, usability test
Procedia PDF Downloads 73819120 Improving Second Language Speaking Skills via Video Exchange
Authors: Nami Takase
Abstract:
Computer-mediated-communication allows people to connect and interact with each other as if they were sharing the same space. The current study examined the effects of using video letters (VLs) on the development of second language speaking skills of Common European Framework of Reference for Languages (CEFR) A1 and CEFR B2 level learners of English as a foreign language. Two groups were formed to measure the impact of VLs. The experimental and control groups were given the same topic, and both groups worked with a native English-speaking university student from the United States of America. Students in the experimental group exchanged VLs, and students in the control group used video conferencing. Pre- and post-tests were conducted to examine the effects of each practice mode. The transcribed speech-text data showed that the VL group had improved speech accuracy scores, while the video conferencing group had increased sentence complexity scores. The use of VLs may be more effective for beginner-level learners because they are able to notice their own errors and replay videos to better understand the native speaker’s speech at their own pace. Both the VL and video conferencing groups provided positive feedback regarding their interactions with native speakers. The results showed how different types of computer-mediated communication impacts different areas of language learning and speaking practice and how each of these types of online communication tool is suited to different teaching objectives.Keywords: computer-assisted-language-learning, computer-mediated-communication, english as a foreign language, speaking
Procedia PDF Downloads 10019119 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 7719118 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections
Authors: Anthony D. Rhodes, Manan Goel
Abstract:
We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.Keywords: computer vision, object segmentation, interactive segmentation, model compression
Procedia PDF Downloads 12019117 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method
Authors: Harish Kumar Ponnappan, Joseph C. Chen
Abstract:
The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.Keywords: live tooling, surface roughness, taguchi analysis, CNC milling operation, CNC turning operation
Procedia PDF Downloads 14219116 Developing a Video Game (Historia’s Nightmare) and Finding Out if We Can Use It to Raise Social Awareness and Improve Learning
Authors: Hasibul Kabir, Samin Shahriar Tokey, Md. Tofazzal Hossain
Abstract:
One of the most necessary things in the present time is raising social awareness about global warming and climate change among the people. Though many types of mediums and techniques have been used to teach people about this global phenomenon, there are still more effective ways to reach people with useful information about global warming. As many traditional methods to teach people about global warming and climate change did not work well, video games were overdue. To learn how effective a video game can be in this regard, we developed a Video game, "Historia's Nightmare," that teaches people about Global warming and climate change. The game was designed to entertain people and give them an idea about the reasons and consequences of global warming and climate change while not being like traditional educational games. The game threw a mini quiz consisting of two MCQs based on the information shown in the game, where a gamer had to pass the quiz to reach the next level. We published the game on different platforms to let all types of people play and complete our experiment effectively. The game continuously communicated with our server to send data about gamers' performance. We observed the data, including the participants' performance, time spent, quiz score, and the in-game feedback on a regular basis, and finally came to a verdict. In our experiment, we have found that most participants positively accepted the game and learned something new. The participants who spent more on our game performed better in both quiz and the game. Our experiment's result demonstrates that video games can be a great way to teach people something, particularly to raise social awareness about global warming and climate change. It also demonstrates that the game can be a significant element in education and learning improvement.Keywords: video game, global warming, social awareness, climate change, education, feedback
Procedia PDF Downloads 13619115 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 24619114 Effect of Immunocastration Vaccine Administration at Different Doses on Performance of Feedlot Holstein Bulls
Authors: M. Bolacali
Abstract:
The aim of the study is to determine the effect of immunocastration vaccine administration at different doses on fattening performance of feedlot Holstein bulls. Bopriva® is a vaccine that stimulates the animals' own immune system to produce specific antibodies against gonadotropin releasing factor (GnRF). Ninety four Holstein male calves (309.5 ± 2.58 kg body live weight and 267 d-old) assigned to the 4 treatments. Control group; 1 mL of 0.9% saline solution was subcutaneously injected to intact bulls on 1st and 60th days of the feedlot as placebo. On the same days of the feedlot, Bopriva® at two doses of 1 mL and 1 mL for Trial-1 group, 1.5 mL, and 1.5 mL for Trial-2 group, 1.5 mL, and 1 mL for Trial-3 group were subcutaneously injected to bulls. The study was conducted in a private establishment in the Sirvan district of Siirt province and lasted 180 days. The animals were weighed at the beginning of fattening and at 30-day intervals to determine their live weights at various periods. The statistical analysis for normal distribution data of the treatment groups was carried out with the general linear model procedure of SPSS software. The fattening initial live weight in Control, Trial-1, Trial-2 and Trial-3 groups was respectively 309.21, 306.62, 312.11, and 315.39 kg. The fattening final live weight was respectively 560.88, 536.67, 548.56, and 548.25 kg. The daily live weight gain during the trial was respectively 1.40, 1.28, 1.31, and 1.29 kg/day. The cold carcass yield was respectively 51.59%, 50.32%, 50.85%, and 50.77%. Immunocastration vaccine administration at different doses did not affect the live weights and cold carcass yields of Holstein male calves reared under intensive conditions (P > 0.05). However, it was determined to reduce fattening performance between 61-120 days (P < 0.05) and 1-180 days (P < 0.01). In addition, it was determined that the best performance among the vaccine-treated groups occurred in the group administered a 1.5 mL of vaccine on the 1st and 60th study days. In animals, castration is used to control fertility, aggressive and sexual behaviors. As a result, the fact that stress is induced by physical castration in animals and active immunization against GnRF maintains performance by maximizing welfare in bulls improves carcass and meat quality and controls unwanted sexual and aggressive behavior. Considering such features, it may be suggested that immunocastration vaccine with Bopriva® can be administered as a 1.5 mL dose on the 1st and 60th days of the fattening period in Holstein bulls.Keywords: anti-GnRF, fattening, growth, immunocastration
Procedia PDF Downloads 19219113 Personalized Climate Change Advertising: The Role of Augmented Reality (A.R.) Technology in Encouraging Users for Climate Change Action
Authors: Mokhlisur Rahman
Abstract:
The growing consensus among scientists and world leaders indicates that immediate action should be considered regarding the climate change phenomenon. However, climate change is no more a global issue but a personal one. Thus, individual participation is necessary to address such a significant issue. Studies show that individuals who perceive climate change as a personal issue are more likely to act toward it. This abstract presents augmented reality (A.R.) technology in the social media platform Facebook video advertising. The idea involves creating a video advertisement that enables users to interact with the video by navigating its features and experiencing the result uniquely and engagingly. This advertisement uses A.R. to bring changes, such as people making changes in real-life scenarios by simple clicks on the video and hearing an instant rewarding fact about their choices. The video shows three options: room, lawn, and driveway. Users select one option and engage in interaction based on while holding the camera in their personal spaces: Suppose users select the first option, room, and hold their camera toward spots such as by the windows, balcony, corners, and even walls. In that case, the A.R. offers users different plants appropriate for those unoccupied spaces in the room. Users can change the options of the plants and see which space at their house deserves a plant that makes it more natural. When a user adds a natural element to the video, the video content explains a piece of beneficiary information about how the user contributes to the world more to be livable and why it is necessary. With the help of A.R., if users select the second option, lawn, and hold their camera toward their lawn, the options are various small trees for their lawn to make it more environmentally friendly and decorative. The video plays a beneficiary explanation here too. Suppose users select the third option, driveway, and hold their camera toward their driveway. In that case, the A.R. video option offers unique recycle bin designs using A.I. measurement of spaces. The video plays audio information on anthropogenic contribution to greenhouse gas emission. IoT embeds tracking code in the video ad on Facebook, which stores the exact number of views in the cloud for data analysis. An online survey at the end collects short qualitative answers. This study helps understand the number of users involved and willing to change their behavior; It makes personalized advertising in social media. Considering the current state of climate change, the urgency for action is increasing. This ad increases the chance to make direct connections with individuals and gives a sense of personal responsibility for climate change to actKeywords: motivations, climate, iot, personalized-advertising, action
Procedia PDF Downloads 7319112 Outcomes of Live Renal Donors with a History of Nephrolithiasis
Authors: Bin Mohamed Ebrahim, Aminesh Singla, Henry Pleass
Abstract:
Aim: There is an ongoing gap in renal transplantation between organs available for donation and recipients on the waiting list. Live donors with pre-existing or a history of renal calculi were thought to be a relative contraindication due to safety concerns for donors. We aim to review current literature assessing outcomes of donors who were found to have a history of renal calculi. Methods: Ovid and Embase were searched between 1960 to 2021 using key terms and Medical Subject Headings (MeSH) – nephrolithiasis, renal stones, renal transplantation and renal graft. Articles included conference proceedings and journal articles and were not excluded based on patient numbers. Studies were excluded if the specific organ was not identified, duplicated reports found or if post-transplant outcomes were not recorded. Outcomes were donor’s renal function or renal calculi recurrence postoperatively. Results: Upon reviewing 344 articles, 14 manuscripts met inclusion criteria. A total of 152 live donors were identified as having pre-existing or with a history of renal calculi at pre-operative workup. The mean stone size was 2.6 4mm (1 – 16) with a mean follow-up duration of 31.8 months (1 – 96). Seven studies had both outcomes. None showed renal complications or stone recurrence. The remaining studies contained 2 out of 84 patients having recurrent nephrolithiasis. Conclusion: Data suggests minimal morbidity involved for live renal donors with a history of nephrolithiasis. This should encourage surgeons to continue recruiting such donors for kidney transplantation.Keywords: renal transplantation, renal graft, nephrolithiasis, renal calculi, live donor
Procedia PDF Downloads 18019111 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts
Authors: Linda Dusman, Linda Baker
Abstract:
The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.Keywords: audience engagement, informal education, music technology, real-time learning
Procedia PDF Downloads 203