Search results for: beatific vision
909 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 192908 Rathke’s Cleft Cyst Presenting as Unilateral Visual Field Defect
Authors: Ritesh Verma, Manisha Rathi, Chand Singh Dhull, Sumit Sachdeva, Jitender Phogat
Abstract:
A Rathke's cleft cyst is a benign growth found on the pituitary gland in the brain, specifically a fluid-filled cyst in the posterior portion of the anterior pituitary gland. It occurs when the Rathke's pouch does not develop properly and ranges in size from 2 to 40mm in diameter. A 38-year-old male presented to the outpatient department with loss of vision in the inferior quadrant of the left eye since 15 days. Visual acuity was 6/6 in the right eye and 6/9 in the left eye. Visual field analysis by HFA-24-2 revealed an inferior field defect extending to the supero-temporal quadrant in the left eye. MRI brain and orbit was advised to the patient and it revealed a well defined cystic pituitary adenoma indenting left optic nerve near optic chiasm consistent with the diagnosis of Rathke’s cleft cyst (RCC). The patient was referred to neurosurgery department for further management. Symptoms vary greatly between individuals having RCCs. RCCs can be non-functioning, functioning, or both. Besides headaches, neurocognitive deficits are almost always present but have a high rate of immediate reversal if the cyst is properly treated or drained.Keywords: pituitary tumors, rathke’s cleft cyst, visual field defects, vision loss
Procedia PDF Downloads 207907 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network
Authors: Cheng Fang, Lingwei Quan, Cunyue Lu
Abstract:
Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.Keywords: computer vision, pose estimation, pose tracking, Siamese network
Procedia PDF Downloads 154906 The Seeds of Limitlessness: Dambudzo Marechera's Utopian Thinking
Authors: Emily S. M. Chow
Abstract:
The word ‘utopia’ was coined by Thomas More in Utopia (1516). Its Greek roots ‘ou’ means ‘not’ and ‘topos’ means ‘place.’ In other words, it literally refers to ‘no-place.’ However, the possibility of having an alternative and better future society has always been appealing. In fact, at the core of every utopianism is the search for a future alternative state with the anticipation of a better life. Nonetheless, the practicalities of such ideas have never ceased to be questioned. At times, building a utopia presents itself as a divisive act. In addition to the violence that must be employed to sweep away the old regime in order to make space for the new, all utopias carry within them the potential for bringing catastrophic consequences to human life. After all, every utopia seeks to remodel the individual in a very particular way for the benefit of the masses. In this sense, utopian thinking has the potential both to create and destroy the future. While writing during a traumatic transitional period in Zimbabwe’s history, Dambudzo Marechera witnessed an age of upheavals in which different parties battled for power over Zimbabwe. Being aware of the fact that all institutionalized narratives, be they originated from the governance of the UK, Ian Smith’s white minority regime or Zimbabwe’s revolutionary parties, revealed themselves to be nothing more than fiction, Marechera realized the impossibility of determining reality absolutely. As such, this thesis concerns the writing of the Zimbabwean maverick, Dambudzo Marechera. It argues that Marechera writes a unique vision of utopia. In short, for Marechera utopia is not a static entity but a moment of perpetual change. He rethinks utopia in the sense that he phrases it as an event that ceaselessly contests institutionalized and naturalized narratives of a post-colonial self and its relationship to society. Marechera writes towards a vision of an alternative future of the country. Yet, it is a vision that does not constitute a fully rounded sense of utopia. Being cautious about the world and the operation of power upon the people, rather than imposing his own utopian ideals, Marechera chooses to instead peeling away the narrative constitution of the self in relation to society in order to turn towards a truly radical utopian thinking that empowers the individual.Keywords: African literature, Marechera, post-colonial literature, utopian studies
Procedia PDF Downloads 413905 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled
Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov
Abstract:
This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS
Procedia PDF Downloads 340904 Vision of Justice in the Future of Humanity
Authors: Morteza Khorrami
Abstract:
The idea of final triumph of peace and justice on evil force, conflict and global spread of the religious faith, the full deployment of human values, constitute a utopia and the ideal society is discussed by many of religions. Thus, mankind has always been waiting for a savior and has received good tidings for coming of Great Savior at the end of Time. Of course, various persons were introduced as the Promised Saviors by different religions, but all of the religions share in this fact that the future of humanity is very bright and promising and the future will belong to the righteous and justice. In this article which is written with a descriptive and analytic method, the author tries to show the vision of global justice at the end of time. The opinion of various religions such as Judaism, Christianity, Zoroastrianism, Islam and even idolatry about the great savior as well as the justice status in his era in the world will be discussed. Also the viewpoint of Muslims and specially Shiites, which is explained clearly in their scripts, will be depicted. Current human responsibility towards this golden era will be discussed, too. Based on paper findings, religious doctrine promises that a heaven person and sacred character will come as a reformer of the world. In his era, humanity will be saved from tyranny, oppression and inequality, and the earth will be filled with peace, security, justice, and equity. Moreover promoting justice, truth and spreading religion in the world, economic, scientific, political and moral development will be happened.Keywords: future of humanity, global justice, islam, religions
Procedia PDF Downloads 374903 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 41902 Motivational Antecedents that Influenced a Higher Education Institution in the Philippines to Adopt Enterprise Architecture
Authors: Ma. Eliza Jijeth V. dela Cruz
Abstract:
Technology is a recent prodigy in people’s everyday life that has taken off. It infiltrated almost every aspect of one’s lives, changing how people work, how people learn and how people perceive things. Academic Institutions, just like other organizations, have deeply modified its strategies to integrate technology into the institutional vision and corporate strategy that has never been greater. Information and Communications Technology (ICT) continues to be recognized as a major factor in organizations realizing its aims and objectives. Consequently, ICT has an important role in the mobilization of an academic institution’s strategy to support the delivery of operational, strategic or transformational objectives. This ICT strategy should align the institution with the radical changes of the ICT world through the use of Enterprise Architecture (EA). Hence, EA’s objective is to optimize the islands of legacy processes to be integrated that is receptive to change and supportive of the delivery of the strategy. In this paper, the focus is to explore the motivational antecedents during the adoption of EA in a Higher Education Institution in the Philippines for its ICT strategic plan. The seven antecedents (viewpoint, stakeholders, human traits, vision, revolutionary innovation, techniques and change components) provide understanding into EA adoption and the antecedents that influences the process of EA adoption.Keywords: Enterprise Architecture, Adoption, Antecedents, Higher Educational Institutions
Procedia PDF Downloads 112901 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia
Authors: Arif Budiman
Abstract:
Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check
Procedia PDF Downloads 442900 Driving What’s Next: The De La Salle Lipa Social Innovation in Quality Education Initiatives
Authors: Dante Jose R. Amisola, Glenford M. Prospero
Abstract:
'Driving What’s Next' is a strong campaign of the new administration of De La Salle Lipa in promoting social innovation in quality education. The new leadership directs social innovation in quality education in the institutional directions and initiatives to address real-world challenges with real-world solutions. This research under study aims to qualify the commitment of the institution to extend the Lasallian quality human and Christian education to all, as expressed in the Institution’s new mission-vision statement. The Classic Grounded Theory methodology is employed in the process of generating concepts in reference to the documents, a series of meetings, focus group discussions and other related activities that account for the conceptualization and formulation of the new mission-vision along with the new education innovation framework. Notably, Driving What’s Next is the emergent theory that encapsulates the commitment of giving quality human and Christian education to all. It directs the new leadership in driving social innovation in quality education initiatives. Correspondingly, Driving What’s Next is continually resolved through four interrelated strategies also termed as the institution's four strategic directions, namely: (1) driving social innovation in quality education, (2) embracing our shared humanity and championing social inclusion and justice initiatives, (3) creating sustainable futures and (4) engaging diverse stakeholders in our shared mission. Significantly, the four strategic directions capture and integrate the 17 UN sustainable development goals, making the innovative curriculum locally and globally relevant. To conclude, the main concern of the new administration and how it is continually resolved, provide meaningful and fun learning experiences and promote a new way of learning in the light of the 21st century skills among the members of the academic community including stakeholders and extended communities at large, which are defined as: learning together and by association (collaboration), learning through engagement (communication), learning by design (creativity) and learning with social impact (critical thinking).Keywords: DLSL four strategic directions , DLSL Lipa mission-vision, driving what's next, social innovation in quality education
Procedia PDF Downloads 218899 Navigating Life Transitions for Young People with Vision Impairment: A Community-Based Participatory Research Approach to Accessibility and Diversity
Authors: Aikaterini Tavoulari, Michael Proulx, Karin Petrini
Abstract:
Objective: This study aims to explore the unique challenges faced by young individuals with vision impairment (VI) during key life transitions, utilizing a community-based participatory research (CBPR) approach to identify limitations and positive aspects of existing support systems, with a focus on accessibility and diversity. Design: The study employs a qualitative CBPR design, engaging young participants with VI through online and in-person working groups over six months, prioritizing their active involvement and diverse perspectives. Methods: Twenty-one young individuals with VI from across the UK and with different VI conditions were recruited to participate in the study via a climbing and virtual reality event and stakeholders’ support. Data collection methods included open discussions, forum exchanges, and qualitative questionnaires. The data were analyzed with NVivo using inductive thematic analysis to identify key themes and patterns related to the challenges and experiences of life transitions for this diverse population. Results: The analysis revealed barriers to accessibility, such as assumptions about what a person with VI can do, inaccessibility to material, noisy environments, and insufficient training with assistive technologies. Enablers included guidance from diverse professionals and peers, multisensory approaches (beyond tactile), and peer collaborations. This study underscores the need for developing accessible and tailored strategies together with these young people to address the specific needs of this diverse population during critical life transitions (e.g., to independent living, employment and higher education). Conclusion: Engaging and co-designing effective approaches and tools with young people with VI is key to tackling the specific accessibility barriers they encounter. These approaches should be targeted at different transitional periods of their life journey, promoting diversity and inclusion.Keywords: vision impairement, life transitions, qualitative research, community-based participatory design, accessibility
Procedia PDF Downloads 51898 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 231897 Water Efficiency: Greywater Recycling
Authors: Melissa Lubitz
Abstract:
Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together.Keywords: greywater, wastewater treatment, water conservation, circular water society
Procedia PDF Downloads 63896 Choosing Local Organic Food: Consumer Motivations and Ethical Spaces
Authors: Artur Saraiva, Moritz von Schwedler, Emília Fernandes
Abstract:
In recent years, the organic sector has increased significantly. However, with the ‘conventionalization’ of these products, it has been questioned whether these products have been losing their original vision. Accordingly, this research based on 31 phenomenological interviews with committed organic consumers in urban and rural areas of Portugal, aims to analyse how ethical motivations and ecological awareness are related to organic food consumption. The content thematic analysis highlights aspects related to society and environmental concerns. On an individual level, the importance of internal coherence, peace of mind and balance that these consumers find in the consumption of local organic products was stressed. For these consumers, local organic products consumption made for significant changes in their lives, aiding in the establishment of a green identity, and involves a certain philosophy of life. This vision of an organic lifestyle is grounded in a political and ecological perspective, beyond the usual organic definition, as a ‘post-organic era’. The paper contributes to better understand how an ideological environmental discourse allows highlighting the relationship between consumers’ environmental concerns and the politics of food, resulting in a possible transition to new sustainable consumption practices.Keywords: organic consumption, localism, content thematic analysis, pro-environmental discourse, political consumption, Portugal
Procedia PDF Downloads 214895 Interrogating the Theoretical Basis of the Freedom Charter in South Africa
Authors: Sibonginkosi Mazibuko
Abstract:
The “adoption” of the Freedom Charter in 1955 at Kliptown south of Johannesburg, South Africa represented a desire to create a society that is based on common citizenship, and democracy. The architects of the Charter had a vision of a society that lived in peace with itself. Today, the Charter is still promoted as the best thing that ever happened to a society ravaged by racism, dispossession, oppression and exploitation – a society divided in all aspects of its life. This paper moves from the understanding that land is fundamental to all life. It interrogates the Charter’s claim on land. At a time when the colonised world sought to free themselves from the chains of colonialism and Africans throughout the continent demanded Africa for the Africans, the Freedom Charter claimed South Africa for all who lived in it. To the extent that this paper problematizes the philosophical underpinnings of the Charter, it uses the methodology of dialectic materialism to understand the theoretical basis of the Freedom Charter. The paper argues that the understanding, desire and the vision of the Freedom Charter were, as they are today, irreconcilable. To that effect and in pursuit of narrow class interests, the Charter justified land dispossession and unsustainable living conditions for the dispossessed majority. The paper then concludes that, by misrepresenting the critically fundamental land question, the Charter tried to reconcile the dispossessed with their dispossession and thus reflected coloniality and whiteness long before colonialism and settler-colonialism came to an end in South Africa.Keywords: colonialism, contradictions, freedom charter, South Africa
Procedia PDF Downloads 431894 Rare Diagnosis in Emergency Room: Moyamoya Disease
Authors: Ecem Deniz Kırkpantur, Ozge Ecmel Onur, Tuba Cimilli Ozturk, Ebru Unal Akoglu
Abstract:
Moyamoya disease is a unique chronic progressive cerebrovascular disease characterized by bilateral stenosis or occlusion of the arteries around the circle of Willis with prominent arterial collateral circulation. The occurrence of Moyamoya disease is related to immune, genetic and other factors. There is no curative treatment for Moyamoya disease. Secondary prevention for patients with symptomatic Moyamoya disease is largely centered on surgical revascularization techniques. We present here a 62-year old male presented with headache and vision loss for 2 days. He was previously diagnosed with hypertension and glaucoma. On physical examination, left eye movements were restricted medially, both eyes were hyperemic and their movements were painful. Other neurological and physical examination were normal. His vital signs and laboratory results were within normal limits. Computed tomography (CT) showed dilated vascular structures around both lateral ventricles and atherosclerotic changes inside the walls of internal carotid artery (ICA). Magnetic resonance imaging (MRI) and angiography (MRA) revealed dilated venous vascular structures around lateral ventricles and hyper-intense gliosis in periventricular white matter. Ischemic gliosis around the lateral ventricles were present in the Digital Subtracted Angiography (DSA). After the neurology, ophthalmology and neurosurgery consultation, the patient was diagnosed with Moyamoya disease, pulse steroid therapy was started for vision loss, and super-selective DSA was planned for further investigation. Moyamoya disease is a rare condition, but it can be an important cause of stroke in both children and adults. It generally affects anterior circulation, but posterior cerebral circulation may also be affected, as well. In the differential diagnosis of acute vision loss, occipital stroke related to Moyamoya disease should be considered. Direct and indirect surgical revascularization surgeries may be used to effectively revascularize affected brain areas, and have been shown to reduce risk of stroke.Keywords: headache, Moyamoya disease, stroke, visual loss
Procedia PDF Downloads 267893 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 213892 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites
Authors: A. Kavita Murugkar, B. Anurag Kashyap
Abstract:
With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience
Procedia PDF Downloads 107891 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 103890 The Relationship between Knowledge Management Processes and Strategic Thinking at the Organization Level
Authors: Bahman Ghaderi, Hedayat Hosseini, Parviz Kafche
Abstract:
The role of knowledge management processes in achieving the strategic goals of organizations is crucial. To this end, understanding the relationship between knowledge management processes and different aspects of strategic thinking (followed by long-term organizational planning) should be considered. This research examines the relationship between each of the five knowledge management processes (creation, storage, transfer, audit, and deployment) with each dimension of strategic thinking (vision, creativity, thinking, communication and analysis) in one of the major sectors of the food industry in Iran. In this research, knowledge management and its dimensions (knowledge acquisition, knowledge storage, knowledge transfer, knowledge auditing, and finally knowledge utilization) as independent variables and strategic thinking and its dimensions (creativity, systematic thinking, vision, strategic analysis, and strategic communication) are considered as the dependent variable. The statistical population of this study consisted of 245 managers and employees of Minoo Food Industrial Group in Tehran. In this study, a simple random sampling method was used, and data were collected by a questionnaire designed by the research team. Data were analyzed using SPSS 21 software. LISERL software is also used for calculating and drawing models and graphs. Among the factors investigated in the present study, knowledge storage with 0.78 had the most effect, and knowledge transfer with 0.62 had the least effect on knowledge management and thus on strategic thinking.Keywords: knowledge management, strategic thinking, knowledge management processes, food industry
Procedia PDF Downloads 171889 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 177888 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 116887 Integrated Risk Management as a Framework for Organisational Success
Authors: Olakunle Felix Adekunle
Abstract:
Risk management is recognised as an essential tool to tackle the inevitable uncertainty associated with business and projects at all levels. But it frequently fails to meet expectations, with projects continuing to run late, over budget or under performing, and business is not gaining the expected benefits. The evident disconnect which often occurs between strategic vision and tactical project delivery typically arises from poorly defined project objectives and inadequate attention to the proactive management of risks that could affect those objectives. One of the main failings in the traditional approach to risk management arises from a narrow focus on the downside, restricted to the technical or operational field, addressing tactical threats to processes, performance or people. This shortcoming can be overcome by widening the scope of risk management to encompass both strategic risks and upside opportunities, creating an integrated approach which can bridge the gap between strategy and tactics. Integrated risk management addresses risk across a variety of levels in the organisation, including strategy and tactics, and covering both opportunity and threat. Effective implementation of integrated risk management can produce a number of benefits to the organisation which are not available from the typical limited-scope risk process. This paper explores how to expand risk management to deliver strategic advantage while retaining its use as a tactical tool.Keywords: risk management, success, organization, strategy, project, tactis, vision
Procedia PDF Downloads 399886 Design and Development of Multi-Functional Intelligent Robot Arm Gripper
Authors: W. T. Asheber, L. Chyi-Yeu
Abstract:
An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.Keywords: gripper, intelligent gripper, transmissivity, vision sensor
Procedia PDF Downloads 355885 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 142884 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 250883 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset
Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.
Abstract:
Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.
Procedia PDF Downloads 81882 Analyzing the Causes of Amblyopia among Patients in Tertiary Care Center: Retrospective Study in King Faisal Specialist Hospital and Research Center
Authors: Hebah M. Musalem, Jeylan El-Mansoury, Lin M. Tuleimat, Selwa Alhazza, Abdul-Aziz A. Al Zoba
Abstract:
Background: Amblyopia is a condition that affects the visual system triggering a decrease in visual acuity without a known underlying pathology. It is due to abnormal vision development in childhood or infancy. Most importantly, vision loss is preventable or reversible with the right kind of intervention in most of the cases. Strabismus, sensory defects, and anisometropia are all well-known causes of amblyopia. However, ocular misalignment in Strabismus is considered the most common form of amblyopia worldwide. The risk of developing amblyopia increases in premature children, developmentally delayed or children who had brain lesions affecting the visual pathway. The prevalence of amblyopia varies between 2 to 5 % in the world according to the literature. Objective: To determine the different causes of Amblyopia in pediatric patients seen in ophthalmology clinic of a tertiary care center, i.e. King Faisal Specialist Hospital and Research Center (KFSH&RC). Methods: This is a hospital based, random retrospective, based on reviewing patient’s files in the Ophthalmology Department of KFSH&RC in Riyadh city, Kingdom of Saudi Arabia. Inclusion criteria: amblyopic pediatric patients who attended the clinic from 2015 to 2016, who are between 6 months and 18 years old. Exclusion Criteria: patients above 18 years of age and any patient who is uncooperative to obtain an accurate vision or a proper refraction. Detailed ocular and medical history are recorded. The examination protocol includes a full ocular exam, full cycloplegic refraction, visual acuity measurement, ocular motility and strabismus evaluation. All data were organized in tables and graphs and analyzed by statistician. Results: Our preliminary results will be discussed on spot by our corresponding author. Conclusions: We focused on this study on utilizing various examination techniques which enhanced our results and highlighted a distinguished correlation between amblyopia and its’ causes. This paper recommendation emphasizes on critical testing protocols to be followed among amblyopic patient, especially in tertiary care centers.Keywords: amblyopia, amblyopia causes, amblyopia diagnostic criterion, amblyopia prevalence, Saudi Arabia
Procedia PDF Downloads 160881 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 165880 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 103