Search results for: advanced radiation detection and measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9139

Search results for: advanced radiation detection and measurement

8959 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 66
8958 Multichannel Object Detection with Event Camera

Authors: Rafael Iliasov, Alessandro Golkar

Abstract:

Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.

Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision

Procedia PDF Downloads 27
8957 A Numerical Investigation of Total Temperature Probes Measurement Performance

Authors: Erdem Meriç

Abstract:

Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.

Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes

Procedia PDF Downloads 134
8956 Blood Volume Pulse Extraction for Non-Contact Photoplethysmography Measurement from Facial Images

Authors: Ki Moo Lim, Iman R. Tayibnapis

Abstract:

According to WHO estimation, 38 out of 56 million (68%) global deaths in 2012, were due to noncommunicable diseases (NCDs). To avert NCD, one of the solutions is early detection of diseases. In order to do that, we developed 'U-Healthcare Mirror', which is able to measure vital sign such as heart rate (HR) and respiration rate without any physical contact and consciousness. To measure HR in the mirror, we utilized digital camera. The camera records red, green, and blue (RGB) discoloration from user's facial image sequences. We extracted blood volume pulse (BVP) from the RGB discoloration because the discoloration of the facial skin is accordance with BVP. We used blind source separation (BSS) to extract BVP from the RGB discoloration and adaptive filters for removing noises. We utilized singular value decomposition (SVD) method to implement the BSS and the adaptive filters. HR was estimated from the obtained BVP. We did experiment for HR measurement by using our method and previous method that used independent component analysis (ICA) method. We compared both of them with HR measurement from commercial oximeter. The experiment was conducted under various distance between 30~110 cm and light intensity between 5~2000 lux. For each condition, we did measurement 7 times. The estimated HR showed 2.25 bpm of mean error and 0.73 of pearson correlation coefficient. The accuracy has improved compared to previous work. The optimal distance between the mirror and user for HR measurement was 50 cm with medium light intensity, around 550 lux.

Keywords: blood volume pulse, heart rate, photoplethysmography, independent component analysis

Procedia PDF Downloads 329
8955 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 13
8954 Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms

Authors: Chia-Hui Chen, Chien-Kuo Wang

Abstract:

Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface.

Keywords: full-field digital mammography, digital breast tomosynthesis, optically stimulated luminescent dosimeters, surface dose

Procedia PDF Downloads 420
8953 Characterization of the MOSkin Dosimeter for Accumulated Dose Assessment in Computed Tomography

Authors: Lenon M. Pereira, Helen J. Khoury, Marcos E. A. Andrade, Dean L. Cutajar, Vinicius S. M. Barros, Anatoly B. Rozenfeld

Abstract:

With the increase of beam widths and the advent of multiple-slice and helical scanners, concerns related to the current dose measurement protocols and instrumentation in computed tomography (CT) have arisen. The current methodology of dose evaluation, which is based on the measurement of the integral of a single slice dose profile using a 100 mm long cylinder ionization chamber (Ca,100 and CPPMA, 100), has been shown to be inadequate for wide beams as it does not collect enough of the scatter-tails to make an accurate measurement. In addition, a long ionization chamber does not offer a good representation of the dose profile when tube current modulation is used. An alternative approach has been suggested by translating smaller detectors through the beam plane and assessing the accumulated dose trough the integral of the dose profile, which can be done for any arbitrary length in phantoms or in the air. For this purpose, a MOSFET dosimeter of small dosimetric volume was used. One of its recently designed versions is known as the MOSkin, which is developed by the Centre for Medical Radiation Physics at the University of Wollongong, and measures the radiation dose at a water equivalent depth of 0.07 mm, allowing the evaluation of skin dose when placed at the surface, or internal point doses when placed within a phantom. Thus, the aim of this research was to characterize the response of the MOSkin dosimeter for X-ray CT beams and to evaluate its application for the accumulated dose assessment. Initially, tests using an industrial x-ray unit were carried out at the Laboratory of Ionization Radiation Metrology (LMRI) of Federal University of Pernambuco, in order to investigate the sensitivity, energy dependence, angular dependence, and reproducibility of the dose response for the device for the standard radiation qualities RQT 8, RQT 9 and RQT 10. Finally, the MOSkin was used for the accumulated dose evaluation of scans using a Philips Brilliance 6 CT unit, with comparisons made between the CPPMA,100 value assessed with a pencil ionization chamber (PTW Freiburg TW 30009). Both dosimeters were placed in the center of a PMMA head phantom (diameter of 16 cm) and exposed in the axial mode with collimation of 9 mm, 250 mAs and 120 kV. The results have shown that the MOSkin response was linear with doses in the CT range and reproducible (98.52%). The sensitivity for a single MOSkin in mV/cGy was as follows: 9.208, 7.691 and 6.723 for the RQT 8, RQT 9 and RQT 10 beams qualities respectively. The energy dependence varied up to a factor of ±1.19 among those energies and angular dependence was not greater than 7.78% within the angle range from 0 to 90 degrees. The accumulated dose and the CPMMA, 100 value were 3,97 and 3,79 cGy respectively, which were statistically equivalent within the 95% confidence level. The MOSkin was shown to be a good alternative for CT dose profile measurements and more than adequate to provide accumulated dose assessments for CT procedures.

Keywords: computed tomography dosimetry, MOSFET, MOSkin, semiconductor dosimetry

Procedia PDF Downloads 311
8952 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 480
8951 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression

Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner

Abstract:

In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.

Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry

Procedia PDF Downloads 198
8950 Generalized Uncertainty Principle Modified Hawking Radiation in Bumblebee Gravity

Authors: Sara Kanzi, Izzet Sakalli

Abstract:

The effect of Lorentz symmetry breaking (LSB) on the Hawking radiation of Schwarzschild-like black hole found in the bumblebee gravity model (SBHBGM) is studied in the framework of quantum gravity. To this end, we consider Hawking radiation spin-0 (bosons) and spin-12particles (fermions), which go in and out through the event horizon of the SBHBGM. We use the modified Klein-Gordon and Dirac equations, which are obtained from the generalized uncertainty principle (GUP) to show how Hawking radiation is affected by the GUP and LSB. In particular, we reveal that independent of the spin of the emitted particles, GUP causes a change in the Hawking temperature of the SBHBGM. Furthermore, we compute the semi-analytic greybody factors (for both bosons and fermions) of the SBHBGM. Thus, we reveal that LSB is effective on the greybody factor of the SBHBGM such that its redundancy decreases the value of the greybody factor. Our findings are graphically depicted.

Keywords: bumblebee gravity model, Hawking radiation, generalized uncertainty principle, Lorentz symmetry breaking

Procedia PDF Downloads 136
8949 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study

Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan

Abstract:

Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.

Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation

Procedia PDF Downloads 225
8948 Effect of Acute Dose of Mobile Phone Radiation on Life Cycle ‎of the Mosquito, Culex univittatus

Authors: Fatma H. Galal, Alaaeddeen M. Seufi

Abstract:

Due to the increasing usage of mobile phone, experiments were designed to investigate ‎the effect of acute dose exposure on the mosquito life cycle. 50 tubes (5 ml size) ‎containing 3 ml water and a first instar larva of the mosquito, Culex univittatus were put ‎between two mobile cell phones switched on talking mode for 4 continuous hours. A ‎control group of tubes (unexposed to radiation) were used. Larval and pupal durations ‎were calculated. Furthermore, adult emergence and sex ratio were observed for both ‎treated and control larvae. Results indicated that the employed dose of radiation reduced ‎total larval duration to about half the value of control. 1st, 2nd, 3rd and 4th larval ‎durations were reduced significantly by mobile radiation when compared to controls. ‎Meanwhile pupal duration was elongated significantly by mobile radiation when ‎compared to control. Sex ratio was significantly shifted in favor of females in the case of ‎radiated mosquitoes. Successful adult emergence was decreased significantly in the case ‎of radiated insects when compared to controls. Molecular studies to investigate the ‎effects of mobile radiation on insects and other model organisms are going on.‎

Keywords: mosquito, mobilr radiation, larval and pupal durations, sex ratio

Procedia PDF Downloads 185
8947 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 66
8946 Calculation of Organs Radiation Dose in Cervical Carcinoma External Irradiation Beam Using Day’s Methods

Authors: Yousif M. Yousif Abdallah, Mohamed E. Gar-Elnabi, Abdoelrahman H. A. Bakary, Alaa M. H. Eltoum, Abdelazeem K. M. Ali

Abstract:

The study was established to measure the amount of radiation outside the treatment field in external beam radiation therapy using day method of dose calculation, the data was collected from 89 patients of cervical carcinoma in order to determine if the dose outside side the irradiation treatment field for spleen, liver, both kidneys, small bowel, large colon, skin within the acceptable limit or not. The cervical field included mainly 4 organs which are bladder, rectum part of small bowel and hip joint these organ received mean dose of (4781.987±281.321), (4736.91±331.8), (4647.64±387.1) and (4745.91±321.11) respectively. The mean dose received by outfield organs was (77.69±15.24cGy) to large colon, (93.079±12.31cGy) to right kidney (80.688±12.644cGy) to skin, (155.86±17.69cGy) to small bowel. This was more significant value noted.

Keywords: radiation dose, cervical carcinoma, day’s methods, radiation medicine

Procedia PDF Downloads 419
8945 Assessment of Exposure Dose Rate from Scattered X-Radiation during Diagnostic Examination in Nigerian University Teaching Hospital

Authors: Martins Gbenga., Orosun M. M., Olowookere C. J., Bamidele Lateef

Abstract:

Radiation exposures from diagnostic medical examinations are almost always justified by the benefits of accurate diagnosis of possible disease conditions. The aim is to assess the influence of selected exposure parameters on scattered dose rates. The research was carried out using Gamma Scout software installation on the Computer system (Laptop) to record the radiation counts, pulse rate, and dose rate for 136 patients. Seventy-three patients participated in the male category with 53.7%, while 63 females participated with 46.3%. The mean and standard deviation value for each parameter is recorded, and tube potential is within 69.50±11.75 ranges between 52.00 and 100.00, tube current is within 23.20±17.55 ranges between 4.00 and 100.00, focus skin distance is within 73.195±33.99 and ranges between 52.00 and 100.00. Dose Rate (DRate in µSv/hr) is significant at an interval of 0.582 and 0.587 for tube potential and body thickness (cm). Tube potential is significant at an interval of 0.582 and 0.842 of DRate (µSv/hr) and body thickness (cm). The study was compared with other studies. The exposure parameters selected during each examination contributed to scattered radiation. A quality assurance program (QAP) is advised for the center.

Keywords: x-radiation, exposure rate, dose rate, tube potentials, scattered radiation, diagnostic examination

Procedia PDF Downloads 146
8944 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 250
8943 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 7
8942 A Survey on the Sun Tracking Systems and Its Principle for Getting Maximum Sun Radiation

Authors: Talha Ali Khan

Abstract:

Discovering different energy resources to fulfill the world's growing demand is now one of the society’s bigger challenges for the next half-century. The main task is to convert the sun radiation into electricity via photovoltaic solar cells which is suddenly decreasing $/watt of delivered solar electricity. Therefore, in this context the sun trackers are those devices that can be used to ameliorate efficiency. In this paper, a variety of the sun tracking systems are evaluated and their merits and demerits are highlighted. The most adept and proficient sun-tracking devices are polar axis and azimuth-elevation types.

Keywords: dual axis, fixed axis, sun tracker, sun radiation

Procedia PDF Downloads 454
8941 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 93
8940 Securing Web Servers by the Intrusion Detection System (IDS)

Authors: Yousef Farhaoui

Abstract:

An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS).

Keywords: intrusion detection, architectures, characteristic, tools, security, web server

Procedia PDF Downloads 418
8939 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
8938 Solar Energy Potential Studies of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha Afshan Siddiqui

Abstract:

Solar radiation studies of Sindh province have been studied to evaluate the solar energy potential of the area. Global and diffuse solar radiation on horizontal surface over five cities namely Karachi, Hyderabad, Nawabshah, Chore and Padidan of Sindh province were carried out using sun shine hour data of the area to assess the feasibility of solar energy utilization. The result obtained shows a large variation of direct and diffuse component of solar radiation in winter and summer months. 50% direct and 50% diffuse solar radiation for Karachi and Hyderabad were observed and for Chore in summer month July and August the diffuse radiation is about 33 to 39%. For other areas of Sindh such as Nawabshah and Patidan the contribution of direct solar radiation is high throughout the year. The Kt values for Nawabshah and Patidan indicates a clear sky almost throughout the year. In Nawabshah area the percentage of diffuse radiation does not exceed more than 29%. The appearance of cloud is rare even in the monsoon months July and August whereas Karachi and Hyderabad and Chore has low solar potential during the monsoon months. During the monsoon period Karachi and Hyderabad can utilize hybrid system with wind power as wind speed is higher. From the point of view of power generation the estimated values indicate that Karachi and Hyderabad and chore has low solar potential for July and August while Nawabshah, and Padidan has high solar potential Throughout the year.

Keywords: global and diffuse solar radiation, province of Sindh, solar energy potential, solar radiation studies for power generation

Procedia PDF Downloads 259
8937 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity

Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien

Abstract:

This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.

Keywords: CFD, experimental, mathematical models, parabolic trough, radiation

Procedia PDF Downloads 422
8936 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens

Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini

Abstract:

A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.

Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery

Procedia PDF Downloads 294
8935 Use of Galileo Advanced Features in Maritime Domain

Authors: Olivier Chaigneau, Damianos Oikonomidis, Marie-Cecile Delmas

Abstract:

GAMBAS (Galileo Advanced features for the Maritime domain: Breakthrough Applications for Safety and security) is a project funded by the European Space Program Agency (EUSPA) aiming at identifying the search-and-rescue and ship security alert system needs for maritime users (including operators and fishing stakeholders) and developing operational concepts to answer these needs. The general objective of the GAMBAS project is to support the deployment of Galileo exclusive features in the maritime domain in order to improve safety and security at sea, detection of illegal activities and associated surveillance means, resilience to natural and human-induced emergency situations, and develop, integrate, demonstrate, standardize and disseminate these new associated capabilities. The project aims to demonstrate: improvement of the SAR (Search And Rescue) and SSAS (Ship Security Alert System) detection and response to maritime distress through the integration of new features into the beacon for SSAS in terms of cost optimization, user-friendly aspects, integration of Galileo and OS NMA (Open Service Navigation Message Authentication) reception for improved authenticated localization performance and reliability, and at sea triggering capabilities, optimization of the responsiveness of RCCs (Rescue Co-ordination Centre) towards the distress situations affecting vessels, the adaptation of the MCCs (Mission Control Center) and MEOLUT (Medium Earth Orbit Local User Terminal) to the data distribution of SSAS alerts.

Keywords: Galileo new advanced features, maritime, safety, security

Procedia PDF Downloads 92
8934 Detecting Anomalous Matches: An Empirical Study from National Basketball Association

Authors: Jacky Liu, Dulani Jayasuriya, Ryan Elmore

Abstract:

Match fixing and anomalous sports events have increasingly threatened the integrity of professional sports, prompting concerns about existing detection methods. This study addresses prior research limitations in match fixing detection, improving the identification of potential fraudulent matches by incorporating advanced anomaly detection techniques. We develop a novel method to identify anomalous matches and player performances by examining series of matches, such as playoffs. Additionally, we investigate bettors' potential profits when avoiding anomaly matches and explore factors behind unusual player performances. Our literature review covers match fixing detection, match outcome forecasting models, and anomaly detection methods, underscoring current limitations and proposing a new sports anomaly detection method. Our findings reveal anomalous series in the 2022 NBA playoffs, with the Phoenix Suns vs Dallas Mavericks series having the lowest natural occurrence probability. We identify abnormal player performances and bettors' profits significantly decrease when post-season matches are included. This study contributes by developing a new approach to detect anomalous matches and player performances, and assisting investigators in identifying responsible parties. While we cannot conclusively establish reasons behind unusual player performances, our findings suggest factors such as team financial difficulties, executive mismanagement, and individual player contract issues.

Keywords: anomaly match detection, match fixing, match outcome forecasting, problematic players identification

Procedia PDF Downloads 79
8933 Characterization of Complex Electromagnetic Environment Created by Multiple Sources of Electromagnetic Radiation

Authors: Clement Temaneh-Nyah, Josiah Makiche, Josephine Nujoma

Abstract:

This paper considers the characterisation of a complex electromagnetic environment due to multiple sources of electromagnetic radiation as a five-dimensional surface which can be described by a set of several surface sections including: instant EM field intensity distribution maps at a given frequency and altitude, instantaneous spectrum at a given location in space and the time evolution of the electromagnetic field spectrum at a given point in space. This characterization if done over time can enable the exposure levels of Radio Frequency Radiation at every point in the analysis area to be determined and results interpreted based on comparison of the determined RFR exposure level with the safe guidelines for general public exposure given by recognised body such as the International commission on non-ionising radiation protection (ICNIRP), Institute of Electrical and Electronic Engineers (IEEE), the National Radiation Protection Authority (NRPA).

Keywords: complex electromagnetic environment, electric field strength, mathematical models, multiple sources

Procedia PDF Downloads 368
8932 Determination of Full Energy Peak Efficiency and Resolution of Nai (Tl) Detector Using Gamma-ray Spectroscopy

Authors: Jibon Sharma, Alakjyoti Patowary, Moirangthem Nara Singh

Abstract:

In experimental research it is very much essential to obtain the quality control of the system used for the experiment. NaI (Tl) scintillation detector is the most commonly used in radiation and medical physics for measurement of the gamma ray activity of various samples. In addition, the scintillation detector has a lot of applications in the elemental analysis of various compounds, alloys using activation analysis. In each application for quantitative analysis, it is very much essential to know the detection efficiency and resolution for different gamma energies. In this work, the energy dependence of efficiency and resolution of NaI (Tl) detector using gamma-ray spectroscopy are investigated. Different photon energies of 356.01 keV,511keV,661.60keV,1170 keV,1274.53 keV and 1330 keV are obtained from four radioactive sources (133Ba,22Na,137Cs and 60 Co) used in these studies. Values of full energy peak efficiencies of these gamma energies are found to be respectively 58.46%,10.15%,14.39%,1.4%,3.27% and 1.31%. The values of percent resolution for above different gamma ray energies are found to be 11.27%,7.27%,6.38%,5.17%,4.86% and 4.74% respectively. It was found that the efficiency of the detector exponentially decreases with energy and the resolution of the detector is directly proportional to the energy of gamma-ray.

Keywords: naI (Tl) gamma-ray spectrometer, resolution, full energy peak efficiency, radioactive sources

Procedia PDF Downloads 104
8931 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems

Procedia PDF Downloads 376
8930 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 251