Search results for: voltage standing wave ratio (VSWR)
5306 The Use of X-Ray Computed Microtomography in Petroleum Geology: A Case Study of Unconventional Reservoir Rocks in Poland
Authors: Tomasz Wejrzanowski, Łukasz Kaczmarek, Michał Maksimczuk
Abstract:
High-resolution X-ray computed microtomography (µCT) is a non-destructive technique commonly used to determine the internal structure of reservoir rock sample. This study concerns µCT analysis of Silurian and Ordovician shales and mudstones from a borehole in the Baltic Basin, north of Poland. The spatial resolution of the µCT images obtained was 27 µm, which enabled the authors to create accurate 3-D visualizations and to calculate the ratio of pores and fractures volume to the total sample volume. A total of 1024 µCT slices were used to create a 3-D volume of sample structure geometry. These µCT slices were processed to obtain a clearly visible image and the volume ratio. A copper X-ray source filter was used to reduce image artifacts. Due to accurate technical settings of µCT it was possible to obtain high-resolution 3-D µCT images of low X-ray transparency samples. The presented results confirm the utility of µCT implementations in geoscience and show that µCT has still promising applications for reservoir exploration and characterization.Keywords: fractures, material density, pores, structure
Procedia PDF Downloads 2575305 Evolution of Structure and Magnetic Behavior by Pr Doping in SrRuO3
Authors: Renu Gupta, Ashim K. Pramanik
Abstract:
We report the evolution of structure and magnetic properties in perovskite ruthenates Sr1-xPrxRuO3 (x = 0.0 and 0.1). Our main expectations, to induce the structural modification and change the Ru charge state by Pr doping at Sr site. By the Pr doping on Sr site retains orthorhombic structure while we find a minor change in structural parameters. The SrRuO3 have itinerant type of ferromagnetism with ordering temperature ~160 K. By Pr doping, the magnetic moment decrease and ZFC show three distinct peaks (three transition temperature; TM1, TM2 and TM3). Further analysis of magnetization of both samples, at high temperature follow modified CWL and Pr doping gives Curie temperature ~ 129 K which is close to TM2. Above TM2 to TM3, the inverse susceptibility shows upward deviation from CW behavior, indicating the existence AFM like clustered in this regime. The low-temperature isothermal magnetization M (H) shows moment decreases by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which also decreases by Pr doping. The evolution of Rhodes-Wohlfarth ratio increases which suggests the FM in this system evolves toward the itinerant type by Pr doping.Keywords: itinerant ferromagnet, Perovskite structure, Ruthenates, Rhodes-Wohlfarth ratio
Procedia PDF Downloads 3575304 Objective Evaluation on Medical Image Compression Using Wavelet Transformation
Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah
Abstract:
The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation
Procedia PDF Downloads 2855303 The Correlation Between the Rise of China and the US-Iranian Conflict: An American Perspective
Authors: Ranj Tofik
Abstract:
This article aims to demonstrate a link and/or correlation between the rise of China and the US-Iranian conflict, from a US point of view. To demonstrate this link, the article relies on the content analysis method by analyzing American reports and official data. This article concludes that this correlation indicates that the more China rises and the greater the Chinese threat to America, the more changes will occur in the US-Iranian conflict and the US actions regarding this conflict will increase – in the form of imposing sanctions and using means of pressure on Iran, or trying to reach an agreement and settlement with Iran. This article, via noting and observing that correlation, also claims that before 2012, Iran was a regional threat to US interests in the Middle East. However, after 2012 when the rise of China became one of the major threats to America, Iran, because of its rapprochement with China, became also part of the Chinese threat, which is a threat to America's global standing. In addition, observing this correlation indicates the possibility that the rise of China and its threat to the USA has become one of the main drivers in the US-Iranian conflict. Consequently, it can be said that Iran has become a vital issue in the US-China rivalry, as it has become an appropriate gateway for China to enter the Middle East and undermine US hegemony there.Keywords: China-Iran relations, China's rise, JCPOA, US-Chinese competition, US-Iranian conflict
Procedia PDF Downloads 1015302 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method
Authors: A. Zerarka, W. Djoudi
Abstract:
The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions
Procedia PDF Downloads 6635301 Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment
Authors: Arturo S. Daag, Ira Karrel D. L. San Jose, Mike Gabriel G. Pedrosa, Ken Adrian C. Villarias, Rayfred P. Ingeniero, Cyrah Gale H. Rocamora, Margarita P. Dizon, Roland Joseph B. De Leon, Teresito C. Bacolcol
Abstract:
The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides.Keywords: earthquake-induced landslide, remote sensing, geomorphology, seismic response
Procedia PDF Downloads 1285300 Assessing the Financial Potential of an Agroforestry-Based Farming Practice in a Labor Scarce Subsistence Economy
Authors: Arun Dhakal, Rajesh Kumar Rai
Abstract:
Agroforestry is long practiced in Nepal as a means of subsistence livelihoods. Given its potential to climate change mitigation, this practice is being recommended as a climate-smart farming practice in the recent years. However, the financial attractiveness of this practice is not well-documented in a labor scarce economy such as Nepal. This study attempts to examine the financial suitability of an agroforestry-based farming practice in the present socio-economic context of Nepal where labor is in short supply. A total of 200 households were randomly selected for household surveys in Dhanusha district during April to July 2015. Two farming practices were found to be dominant in the study area: 1) conventional farming (field crops only) in which at least two field crops are annually grown, and 2) agroforestry-based farming (agroforest, home garden and field crops combined) practice (ABFP). The ABFP was found to be less labor intensive than the conventional farming (137 Man days/yr/ha vs 218 Man days/yr/ha). The ex-ante financial analysis indicated that both the farming practices generated positive NPVs (Net Present Values) and B/C (Benefit-Cost) ratios greater than one, indicating both are financially attractive farming enterprises under the base discount rate of 12%. However, the ABFP generated higher NPV and greater B/C ratio than the conventional farming, indicating the former was financially more attractive than the later. The sensitivity analysis showed that the conventional farming was more sensitive to change in labor wage rate than that of the ABFP. Up to the 24% discount rate, the ABFP generated higher NPV and in case of B/C ratio, the ratio was found greater for ABFP even in 50% discount rate.Keywords: agroforestry, benefit-cost analysis, conventional farming, net present value
Procedia PDF Downloads 1335299 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2925298 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis
Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov
Abstract:
The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).Keywords: alumina distribution, aluminum electrolyzer, cryolie-alumina electrolyte, side ledge
Procedia PDF Downloads 2735297 Effect of Playing Football or Body Building on Measurements of Forward Head Posture
Authors: Mohamed Gomaa Mohamed
Abstract:
Type of study: Observational cross section study. Background and purpose: Forward head posture (FHP) is a common sagittal faulty posture with anterior head translation relative to vertical posture line. FHP related to temporomandibular joint dysfunctions, neck pain and headache. Sports persons usually overuse one side of the body in training and playing leading to postural imbalance, yet the effect of playing football or bodybuilding on measurements of FHP has never been studied. Participants: Thirty six subjects divided into 3 groups of 12 football players, 12 body builders and 12 students. Method: FHP severity was assessed by measuring the craniovertebral (CVA) and gaze angles, using the photogrammetric method. Photos were taken from right side of subjects while assuming standing position. Analysis of variance was used to assess angles difference between the three groups. Results: No significant differences were found in CVA and gaze angles between the three groups (P > 0.05). Conclusion: Playing football or body building doesn't impose significant FHP.Keywords: craniovertebral angle, gaze angle, football, body building
Procedia PDF Downloads 4165296 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator
Authors: Wedad Albalawi
Abstract:
The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator
Procedia PDF Downloads 765295 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation
Authors: Richard, Iyan Subiyanto, Chairul Hudaya
Abstract:
Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.Keywords: activated carbon, energy storage material, green coke, specific surface area
Procedia PDF Downloads 1675294 Water Footprint for the Palm Oil Industry in Malaysia
Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz
Abstract:
Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method
Procedia PDF Downloads 1755293 Simulation of Channel Models for Device-to-Device Application of 5G Urban Microcell Scenario
Authors: H. Zormati, J. Chebil, J. Bel Hadj Tahar
Abstract:
Next generation wireless transmission technology (5G) is expected to support the development of channel models for higher frequency bands, so clarification of high frequency bands is the most important issue in radio propagation research for 5G, multiple urban microcellular measurements have been carried out at 60 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL), the objective is to compare simulation results of some studied channel models with the purpose of testing the performance of each one.Keywords: 5G, channel model, 60GHz channel, millimeter-wave, urban microcell
Procedia PDF Downloads 3195292 Wetting Properties of Silver Based Alloys
Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai
Abstract:
The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.Keywords: contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting
Procedia PDF Downloads 4135291 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin
Authors: Hillary Mwongyera
Abstract:
The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring
Procedia PDF Downloads 5315290 Electronic, Structure and Magnetic Properties of KXF3(X= Fe, Co, Mn, V) from Ab Initio Calculations
Authors: M. Ibrir, S. Berri, S. Lakel, D. Maouche And Y. Medkour
Abstract:
We have performed first-principle calculations of the structural, electronic and magnetic properties of KFeF3, KCoF3, KMnF3, KVF3, using full-potential linearized augmented plane-wave (FP-LAPW) scheme within GGA. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Also, we have presented our results of the band structure and the density of states. The magnetic moments of KFeF3, KCoF3, KMnF3, KVF3 compounds are in most came from the exchange-splitting of X-3d orbital.Keywords: Ab initio calculations, electronic structure, magnetic materials
Procedia PDF Downloads 4205289 Simulation of Reflectometry in Alborz Tokamak
Authors: S. Kohestani, R. Amrollahi, P. Daryabor
Abstract:
Microwave diagnostics such as reflectometry are receiving growing attention in magnetic confinement fusionresearch. In order to obtain the better understanding of plasma confinement physics, more detailed measurements on density profile and its fluctuations might be required. A 2D full-wave simulation of ordinary mode propagation has been written in an effort to model effects seen in reflectometry experiment. The code uses the finite-difference-time-domain method with a perfectly-matched-layer absorption boundary to solve Maxwell’s equations.The code has been used to simulate the reflectometer measurement in Alborz Tokamak.Keywords: reflectometry, simulation, ordinary mode, tokamak
Procedia PDF Downloads 4205288 Manifestations of Moral Imagination during the COVID-19 Pandemic in the Debates of Lithuanian Parliament
Authors: Laima Zakaraite, Vaidas Morkevicius
Abstract:
The COVID-19 pandemic brought important and pressing challenges for politicians around the world. Governments, parliaments, and political leaders had to make quick decisions about containment of the pandemic, usually without clear knowledge about the factual spread of the virus, the possible expected speed of spread, and levels of mortality. Opinions of experts were also divided, as some advocated for ‘herd immunity’ without closing down the economy and public life, and others supported the idea of strict lockdown. The debates about measures of pandemic containment were heated and involved strong moral tensions with regard to the possible outcomes. This paper proposes to study the manifestations of moral imagination in the political debates regarding the COVID-19 pandemic. Importantly, moral imagination is associated with twofold abilities of a decision-making actor: the ability to discern the moral aspects embedded within a situation and the ability to envision a range of possibilities alternative solutions to the situation from a moral perspective. The concept was most thoroughly investigated in business management studies. However, its relevance for the study of political decision-making is also rather clear. The results of the study show to what extent politicians are able to discern the wide range of moral issues related to a situation (in this case, consequences of COVID-19 pandemic in a country) and how broad (especially, from a moral perspective) are discussions of the possible solutions proposed for solving the problem (situation). Arguably, political discussions and considerations are broader and affected by a wider and more varied range of actors and ideas compared to decision making in the business management sector. However, the debates and ensuing solutions may also be restricted by ideological maxims and advocacy of special interests. Therefore, empirical study of policy proposals and their debates might reveal the actual breadth of moral imagination in political discussions. For this purpose, we carried out the qualitative study of the parliamentary debates related to the COVID-19 pandemic in Lithuania during the first wave (containment of which was considered very successful) and at the beginning and consequent acceleration of the second wave (when the spread of the virus became uncontrollable).Keywords: decision making, moral imagination, political debates, political decision
Procedia PDF Downloads 1475287 Modeling of Oligomerization of Ethylene in a Falling film Reactor for the Production of Linear Alpha Olefins
Authors: Adil A. Mohammed, Seif-Eddeen K. Fateen, Tamer S. Ahmed, Tarek M. Moustafa
Abstract:
Falling film were widely used for gas-liquid absorption and reaction process. Modeling of falling film for oligomerization of ethylene reaction to linear alpha olefins is developed. Although there are many researchers discuss modeling of falling film in many processes, there has been no publish study the simulation of falling film for the oligomerization of ethylene reaction to produce linear alpha olefins. The Comsol multiphysics software was used to simulate the mass transfer with chemical reaction in falling film absorption process. The effect of concentration profile absorption of the products through falling thickness is discussed. The effect of catalyst concentration, catalyst/co-catalyst ratio, and temperature is also studied. For the effect of the temperature, as it increase the concentration of C4 increase. For catalyst concentration and catalyst/co-catalyst ratio as they increases the concentration of C4 increases, till it reached almost constant value.Keywords: falling film, oligomerization, comsol mutiphysics, linear alpha olefins
Procedia PDF Downloads 4705286 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production
Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand
Abstract:
A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste
Procedia PDF Downloads 3885285 Predicting COVID-19 Severity Using a Simple Parameters in Resource-Limited Settings
Authors: Sireethorn Nimitvilai, Ussanee Poolvivatchaikarn, Nuchanart Tomeun
Abstract:
Objective: To determine the simple laboratory parameters to predict disease severity among COVID-19 patients in resource-limited settings. Material and methods: A retrospective cohort study was conducted at Nakhonpathom Hospital, a 722-bed tertiary care hospital, with an average of 50,000 admissions per year, during April 15 and May 15, 2021. Eligible patients were adults aged ≥ 15 years who were hospitalized with COVID-19. Baseline characteristics, comorbid conditions ad laboratory findings at admission were collected. Predictive factors for severe COVID-19 infection were analyzed. Result: There were 207 patients (79 male and 128 female) and the mean age was 46.7 (16.8) years. Of these, 39 cases (18.8%) were severe and 168 (81.2%) cases were non-severe. Factors associated with severe COVID-19 were neutrophil to lymphocyte ratio ≥ 4 (OR 8.1, 95%CI 2.3-20.3, P < 0.001) and C-reactive protein to albumin ratio ≥ 10 (OR 3.49, 95%CI 1.3-9.1, p 0.01). Conclusions: Complete blood counts, C-reactive protein and albumin are simple, inexpensive, widely available tests and can be used to predict severe COVID-19 in resource-limited settings.Keywords: COVID-19, predictor of severity, resource-limiting settings, simple laboratory parameters
Procedia PDF Downloads 1805284 NFC Kenaf Core Graphene Paper: In-situ Method Application
Authors: M. A. Izzati, R. Rosazley, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. Jani
Abstract:
Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper.Keywords: NFC, kenaf core, graphene, in-situ method
Procedia PDF Downloads 3945283 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data
Authors: Digvijaysingh S. Bana, Kiran R. Trivedi
Abstract:
This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data
Procedia PDF Downloads 4645282 Study on Shifting Properties of CVT Rubber V-belt
Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato
Abstract:
The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission
Procedia PDF Downloads 1435281 A Simplified Distribution for Nonlinear Seas
Authors: M. A. Tayfun, M. A. Alkhalidi
Abstract:
The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is re-examined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.Keywords: ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness
Procedia PDF Downloads 4325280 Performance of Slot-Entry Hybrid Worn Journal Bearing under Turbulent Lubrication
Authors: Nathi Ram, Saurabh K. Yadav
Abstract:
In turbomachinery, the turbulent flow occurs due to the use of high velocity of low kinematic viscosity lubricants and used in many industrial applications. In the present work, the performance of symmetric slot-entry hybrid worn journal bearing under laminar and turbulent lubrication has been investigated. For turbulent lubrication, the Reynolds equation has been modified using Constantinescu turbulent model. This modified equation has been solved using the finite element method. The effect of turbulent lubrication on bearing’s performance has been presented for symmetric hybrid journal bearing. The slot-entry hybrid worn journal bearing under turbulent/laminar regimes have been investigated. It has been observed that the stiffness and damping coefficients are more for the bearing having slot width ratio (SWR) of 0.25 than the bearing with SWR of 0.5 and 0.75 under the turbulent regime. Further, it is also observed that for constant wear depth parameter, stability threshold speed gets increased for bearing operates at slot width ratio 0.25 under turbulent lubrication.Keywords: hydrostatic bearings, journal bearings, restrictors, turbulent flow models, finite element technique
Procedia PDF Downloads 1645279 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor
Authors: Sumana Kumar, Abha Misra
Abstract:
Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam
Procedia PDF Downloads 1155278 Intelligent Semi-Active Suspension Control of a Electric Model Vehicle System
Authors: Shiuh-Jer Huang, Yun-Han Yeh
Abstract:
A four-wheel drive electric vehicle was built with hub DC motors and FPGA embedded control structure. A 40 steps manual adjusting motorcycle shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. An intelligent fuzzy logic controller was proposed to real-time search appropriate damping ratio based on vehicle running condition. Then, a robust fuzzy sliding mode controller (FSMC) is employed to regulate the target damping ratio of each wheel axis semi-active suspension system. Finally, different road surface conditions are chosen to evaluate the control performance of this semi-active suspension and compare with that of passive system based on wheel axis acceleration signal.Keywords: acceleration, FPGA, Fuzzy sliding mode control, semi-active suspension
Procedia PDF Downloads 4185277 Dynamic Conformal Arc versus Intensity Modulated Radiotherapy for Image Guided Stereotactic Radiotherapy of Cranial Lesion
Authors: Chor Yi Ng, Christine Kong, Loretta Teo, Stephen Yau, FC Cheung, TL Poon, Francis Lee
Abstract:
Purpose: Dynamic conformal arc (DCA) and intensity modulated radiotherapy (IMRT) are two treatment techniques commonly used for stereotactic radiosurgery/radiotherapy of cranial lesions. IMRT plans usually give better dose conformity while DCA plans have better dose fall off. Rapid dose fall off is preferred for radiotherapy of cranial lesions, but dose conformity is also important. For certain lesions, DCA plans have good conformity, while for some lesions, the conformity is just unacceptable with DCA plans, and IMRT has to be used. The choice between the two may not be apparent until each plan is prepared and dose indices compared. We described a deviation index (DI) which is a measurement of the deviation of the target shape from a sphere, and test its functionality to choose between the two techniques. Method and Materials: From May 2015 to May 2017, our institute has performed stereotactic radiotherapy for 105 patients treating a total of 115 lesions (64 DCA plans and 51 IMRT plans). Patients were treated with the Varian Clinac iX with HDMLC. Brainlab Exactrac system was used for patient setup. Treatment planning was done with Brainlab iPlan RT Dose (Version 4.5.4). DCA plans were found to give better dose fall off in terms of R50% (R50% (DCA) = 4.75 Vs R50% (IMRT) = 5.242) while IMRT plans have better conformity in terms of treatment volume ratio (TVR) (TVR(DCA) = 1.273 Vs TVR(IMRT) = 1.222). Deviation Index (DI) is proposed to better facilitate the choice between the two techniques. DI is the ratio of the volume of a 1 mm shell of the PTV and the volume of a 1 mm shell of a sphere of identical volume. DI will be close to 1 for a near spherical PTV while a large DI will imply a more irregular PTV. To study the functionality of DI, 23 cases were chosen with PTV volume ranged from 1.149 cc to 29.83 cc, and DI ranged from 1.059 to 3.202. For each case, we did a nine field IMRT plan with one pass optimization and a five arc DCA plan. Then the TVR and R50% of each case were compared and correlated with the DI. Results: For the 23 cases, TVRs and R50% of the DCA and IMRT plans were examined. The conformity for IMRT plans are better than DCA plans, with majority of the TVR(DCA)/TVR(IMRT) ratios > 1, values ranging from 0.877 to1.538. While the dose fall off is better for DCA plans, with majority of the R50%(DCA)/ R50%(IMRT) ratios < 1. Their correlations with DI were also studied. A strong positive correlation was found between the ratio of TVRs and DI (correlation coefficient = 0.839), while the correlation between the ratio of R50%s and DI was insignificant (correlation coefficient = -0.190). Conclusion: The results suggest DI can be used as a guide for choosing the planning technique. For DI greater than a certain value, we can expect the conformity for DCA plans to become unacceptably great, and IMRT will be the technique of choice.Keywords: cranial lesions, dynamic conformal arc, IMRT, image guided radiotherapy, stereotactic radiotherapy
Procedia PDF Downloads 241