Search results for: financial market prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7748

Search results for: financial market prediction

5738 Tax Avoidance During The Financial Crisis: Role Of Independent Commissioners And External Auditors

Authors: Yasir Ramadhan

Abstract:

This study aims to investigate tax avoidance practices when a financial crisis occurs due to the effects of the COVID-19 pandemic. This study also finds out how the influence of independent commissioners and external auditors on tax avoidance practices during the COVID-19 pandemic. Tax avoidance practices are measured by the current ETR. The role of the independent board of commissioners is measured by the proportion of independent commissioners in the composition of the board of commissioners, while the external auditor is measured by audit quality. In this study, there were 342 observations of companies listed on the Indonesia Stock Exchange from 2019 to 2020. This study used the difference-in-differences (DiD) method in data analysis. The results of this study indicate that companies do tax avoidance during the COVID-19 pandemic. Meanwhile, independent commissioners and qualified audits are not proven to be able to negate tax avoidance practices during the COVID-19 Pandemic. These results also show that a higher proportion of independent commissioners and audit quality are not sufficient for countries with low levels of auditor litigation and investor protection and weak regulatory frameworks.

Keywords: audit, commissioner, tax avoidance, COVID-19 pandemic

Procedia PDF Downloads 147
5737 Predicting Emerging Agricultural Investment Opportunities: The Potential of Structural Evolution Index

Authors: Kwaku Damoah

Abstract:

The agricultural sector is characterized by continuous transformation, driven by factors such as demographic shifts, evolving consumer preferences, climate change, and migration trends. This dynamic environment presents complex challenges for key stakeholders including farmers, governments, and investors, who must navigate these changes to achieve optimal investment returns. To effectively predict market trends and uncover promising investment opportunities, a systematic, data-driven approach is essential. This paper introduces the Structural Evolution Index (SEI), a machine learning-based methodology. SEI is specifically designed to analyse long-term trends and forecast the potential of emerging agricultural products for investment. Versatile in application, it evaluates various agricultural metrics such as production, yield, trade, land use, and consumption, providing a comprehensive view of the evolution within agricultural markets. By harnessing data from the UN Food and Agricultural Organisation (FAOSTAT), this study demonstrates the SEI's capabilities through Comparative Exploratory Analysis and evaluation of international trade in agricultural products, focusing on Malaysia and Singapore. The SEI methodology reveals intricate patterns and transitions within the agricultural sector, enabling stakeholders to strategically identify and capitalize on emerging markets. This predictive framework is a powerful tool for decision-makers, offering crucial insights that help anticipate market shifts and align investments with anticipated returns.

Keywords: agricultural investment, algorithm, comparative exploratory analytics, machine learning, market trends, predictive analytics, structural evolution index

Procedia PDF Downloads 63
5736 Four-dimensional (4D) Decoding Information Presented in Reports of Project Progress in Developing Countries

Authors: Vahid Khadjeh Anvary, Hamideh Karimi Yazdi

Abstract:

Generally, the tool of comparison between performance of each stage in the life of a project, is the number of project progress during that period, which in most cases is only determined as one-dimensional with referring to one of three factors (physical, time, and financial). In many projects in developing countries there are controversies on accuracy and the way of analyzing progress report of projects that hinders getting definitive and engineering conclusions on the status of project.Identifying weakness points of this kind of one-dimensional look on project and determining a reliable and engineering approach for multi-dimensional decoding information receivable from project is of great importance in project management.This can be a tool to help identification of hidden diseases of project before appearing irreversible symptoms that are usually delays or increased costs of execution. The method used in this paper is defining and evaluating a hypothetical project as an example analyzing different scenarios and numerical comparison of them along with related graphs and tables. Finally, by analyzing different possible scenarios in the project, possibility or impossibility of predicting their occurrence is examine through the evidence.

Keywords: physical progress, time progress, financial progress, delays, critical path

Procedia PDF Downloads 374
5735 Verification of Simulated Accumulated Precipitation

Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze

Abstract:

Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.

Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting

Procedia PDF Downloads 147
5734 Bamboo: A Trendy and New Alternative to Wood

Authors: R. T. Aggangan, R. J. Cabangon

Abstract:

Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity.

Keywords: bamboo charcoal and light distillates, engineered bamboo, furniture and handicraft industries, housing and construction, pellets

Procedia PDF Downloads 248
5733 Manage an Acute Pain Unit based on the Balanced Scorecard

Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho

Abstract:

The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.

Keywords: acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal

Procedia PDF Downloads 148
5732 Sexual Orientation, Household Labour Division and the Motherhood Wage Penalty

Authors: Julia Hoefer Martí

Abstract:

While research has consistently found a significant motherhood wage penalty for heterosexual women, where homosexual women are concerned, evidence has appeared to suggest no effect, or possibly even a wage bonus. This paper presents a model of the household with a public good that requires both a monetary expense and a labour investment, and where the household budget is shared between partners. Lower-wage partners will do relatively more of the household labour while higher-wage partners will specialise in market labour, and the arrival of a child exacerbates this split, resulting in the lower-wage partner taking on even more of the household labour in relative terms. Employers take this gender-sexuality dyad as a signal for employees’ commitment to the labour market after having a child, and use the information when setting wages after employees become parents. Given that women empirically earn lower wages than men, in a heterosexual couple the female partner will often do more of the household labour. However, as not every female partner has a lower wage, this results in an over-adjustment of wages that manifests as an unexplained motherhood wage penalty. On the other hand, in homosexual couples wage distributions are ex ante identical, and gender is no longer a useful signal to employers as to whether the partner is likely to specialise in household labour or market labour. This model is then tested using longitudinal data from the EU Standards of Income and Living Conditions (EU-SILC) to investigate the hypothesis that women experience different wage effects of motherhood depending on their sexual orientation. While heterosexual women receive a significant motherhood wage penalty of 8-10%, homosexual mothers do not receive any significant wage bonus or penalty of motherhood, consistent with the hypothesis presented above.

Keywords: discrimination, gender, motherhood, sexual orientation, labor economics

Procedia PDF Downloads 164
5731 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
5730 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression

Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin

Abstract:

This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.

Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression

Procedia PDF Downloads 290
5729 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 222
5728 Developing an Audit Quality Model for an Emerging Market

Authors: Bita Mashayekhi, Azadeh Maddahi, Arash Tahriri

Abstract:

The purpose of this paper is developing a model for audit quality, with regard to the contextual and environmental attributes of the audit profession in Iran. For this purpose, using an exploratory approach, and because of the special attributes of the auditing profession in Iran in terms of the legal environment, regulatory and supervisory mechanisms, audit firms size, and etc., we used grounded theory approach as a qualitative research method. Therefore, we got the opinions of the experts in the auditing and capital market areas through unstructured interviews. As a result, the authors revealed the determinants of audit quality, and by using these determinants, developed an Integrated Audit Quality Model, including causal conditions, intervening conditions, context, as well as action strategies related to AQ and their consequences. In this research, audit quality is studied using a systemic approach. According to this approach, the quality of inputs, processes, and outputs of auditing determines the quality of auditing, therefore, the quality of all different parts of this system is considered.

Keywords: audit quality, integrated audit quality model, demand for audit service, supply of audit, grounded theory

Procedia PDF Downloads 284
5727 The Role of Financial Literacy in Driving Consumer Well-Being

Authors: Amin Nazifi, Amir Raki, Doga Istanbulluoglu

Abstract:

The incorporation of technological advancements into financial services, commonly referred to as Fintech, is primarily aimed at promoting services that are accessible, convenient, and inclusive, thereby benefiting both consumers and businesses. Fintech services employ a variety of technologies, including Artificial Intelligence (AI), blockchain, and big data, to enhance the efficiency and productivity of traditional services. Cryptocurrency, a component of Fintech, is projected to be a trillion-dollar industry, with over 320 million consumers globally investing in various forms of cryptocurrencies. However, these potentially transformative services can also lead to adverse outcomes. For instance, recent Fintech innovations have been increasingly linked to misconduct and disservice, resulting in serious implications for consumer well-being. This could be attributed to the ease of access to Fintech, which enables adults to trade cryptocurrencies, shares, and stocks via mobile applications. However, there is little known about the darker aspects of technological advancements, such as Fintech. Hence, this study aims to generate scholarly insights into the design of robust and resilient Fintech services that can add value to businesses and enhance consumer well-being. Using a mixed-method approach, the study will investigate the personal and contextual factors influencing consumers’ adoption and usage of technology innovations and their impacts on consumer well-being. First, semi-structured interviews will be conducted with a sample of Fintech users until theoretical saturation is achieved. Subsequently, based on the findings of the first study, a quantitative study will be conducted to develop and empirically test the impacts of these factors on consumers’ well-being using an online survey with a sample of 300 participants experienced in using Fintech services. This study will contribute to the growing Transformative Service Research (TSR) literature by addressing the latest priorities in service research and shedding light on the impact of fintech services on consumer well-being.

Keywords: consumer well-being, financial literacy, Fintech, service innovation

Procedia PDF Downloads 64
5726 Cloud Computing Impact on e-Government Adoption

Authors: Ali Elshabrawy

Abstract:

Cloud computing is expected to be important for e Government in near future. Governments need it for solving some of its e Government, financial, infrastructure, legacy systems and integration problems. It reduces information technology (IT) infrastructure needs and support costs, and offers on-demand infrastructure and computational power, improved collaboration capabilities, which are important for e Government projects start up and sustainability. Budget pressures will continue to drive more and more government IT to hybrid and even public clouds, and more cooperation between cloud service providers and governmental agencies are expected, Or developing governmental private, community clouds. Motivation to convince governments to use cloud computing services, will create a pressure on cloud service providers to cope with government's requirements for interoperability, security standards, open data and integration between their cloud systems There will be significant legal action arising out of governmental uses of cloud computing, and legislation addressing both IT and business needs and consumer fears and protections. Cloud computing is a considered a revolution for IT and E business in general and e commerce, e Government in particular. As governments faces increasing challenges regarding IT infrastructure required for e Government projects implementation. As a result of Lack of required financial resources allocated for e Government projects in developed and developing countries. Cloud computing can play a major role to solve some of e Government projects challenges such as, lack of financial resources, IT infrastructure, Human resources trained to manage e Government applications, interoperability, cost efficiency challenges. If we could solve some security issues related to cloud computing usage which considered critical for e Government projects. Pretty sure it’s Just a matter of time before cloud service providers will find out solutions to attract governments as major customers for their business.

Keywords: cloud computing, e-government, adoption, supply side barriers, e-government requirements, challenges

Procedia PDF Downloads 346
5725 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
5724 Navigating Creditors' Interests in the Context of Business Rescue

Authors: Hermanus J. Moolman

Abstract:

The COVID-19 pandemic had a severe impact on the society and companies in South Africa. This raises questions about the position of creditors of companies facing financial distress and the actions that directors should take to cater to the interests of creditors. The extent to which directors owe their duties and consideration to creditors has been the subject of debate. The directors of a solvent company owe their duties to the company in favour of its shareholders. When the company becomes insolvent, creditors are the beneficiaries of the directors’ duties. However, the intermittent phase between solvency and insolvency, otherwise referred to as the realm of insolvency, is not accounted for. The purpose of this paper is to determine whether South African company law appropriately addresses the duties that directors owe to creditors and the extent of consideration given to creditors’ interests when the company is in the realm of insolvency and has started business rescue proceedings. A comparative study on South Africa, the United States of America, the United Kingdom and international instruments was employed to achieve the purpose statement. In the United States of America and the United Kingdom, the focus shifts from shareholders to the best interests of creditors when business recue proceedings commence. Such an approach is not aligned with the purpose of the Companies Act of 2008 that calls for a balance of interests of all persons affected by a company’s financial distress and will not be suitable for the South African context. Business rescue in South Africa is relatively new when compared to the practices of the United States of America and the United Kingdom, and the entrepreneurial landscape in South Africa is still evolving. The interests of creditors are not the only interests at risk when a company is financially distressed. It is recommended that an enlightened creditor value approach is adopted for South Africa, where the interests of creditors, albeit paramount, are balanced with those of other stakeholders. This approach optimises a gradual shift in the duties of directors from shareholders to creditors, without disregarding the interests of shareholders.

Keywords: business rescue, shareholders, creditors, financial distress, balance of interests, alternative remedies, company law

Procedia PDF Downloads 44
5723 Structured Tariff Calculation to Promote Geothermal for Energy Security

Authors: Siti Mariani, Arwin DW Sumari, Retno Gumilang Dewi

Abstract:

This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation.

Keywords: load fator, levelized cost of geothermal, geothermal power plant, structured tariff calculation

Procedia PDF Downloads 440
5722 Assessing the Financial Impact of Federal Benefit Program Enrollment on Low-income Households

Authors: Timothy Scheinert, Eliza Wright

Abstract:

Background: Link Health is a Boston-based non-profit leveraging in-person and digital platforms to promote health equity. Its primary aim is to financially support low-income individuals through enrollment in federal benefit programs. This study examines the monetary impact of enrollment in several benefit programs. Methodologies: Approximately 17,000 individuals have been screened for eligibility via digital outreach, community events, and in-person clinics. Enrollment and financial distributions are evaluated across programs, including the Affordable Connectivity Program (ACP), Lifeline, LIHEAP, Transitional Aid to Families with Dependent Children (TAFDC), and the Supplemental Nutrition Assistance Program (SNAP). Major Findings: A total of 1,895 individuals have successfully applied, collectively distributing an estimated $1,288,152.00 in aid. The largest contributors to this sum include: ACP: 1,149 enrollments, $413,640 distributed annually. Child Care Financial Assistance (CCFA): 15 enrollments, $240,000 distributed annually. Lifeline: 602 enrollments, $66,822 distributed annually. LIHEAP: 25 enrollments, $48,750 distributed annually. SNAP: 41 enrollments, $123,000 distributed annually. TAFDC: 21 enrollments, $341,760 distributed annually. Conclusions: These results highlight the role of targeted outreach and effective enrollment processes in promoting access to federal benefit programs. High enrollment rates in ACP and Lifeline demonstrate a considerable need for affordable broadband and internet services. Programs like CCFA and TAFDC, despite lower enrollment numbers, provide sizable support per individual. This analysis advocates for continued funding of federal benefit programs. Future efforts can be made to develop screening tools that identify eligibility for multiple programs and reduce the complexity of enrollment.

Keywords: benefits, childcare, connectivity, equity, nutrition

Procedia PDF Downloads 26
5721 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago

Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu

Abstract:

Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.

Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago

Procedia PDF Downloads 50
5720 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 126
5719 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites

Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler

Abstract:

Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.

Keywords: failure, strength, stress concentration, unidirectional composites

Procedia PDF Downloads 155
5718 Intellectual Capital Disclosure: A Study of Australia and Sri Lanka

Authors: Puwanenthiren Pratheepkanth

Abstract:

This study considers whether national development level influences a firm’s voluntary intellectual capital disclosure (ICD) provided by a sample of 100 Australian and 100 Sri Lankan firms in terms of a two-years during 2015-16. This two-nation study uses a content analysis and literature-review analysis to provide an understanding of the underlying forces and issues. It was found that Australian firms tend to rely heavily on external structure disclosures (with particular attention to brands, customer loyalty, and research collaborations), but Sri Lankan relatively larger firms prefer intellectual property disclosures and the smaller firms tend to be as adept at external structure as their Australian counterparts. It was also found that the nature of a firm tends to trump the nurture of the development level of the country in which the firm is embedded. While a wider diffusion of better ICD methodology under International Financial Reporting Standard (IFRS) could improve the cost-effectiveness of financial reporting and generally increase efficiency, this is unlikely to occur until competition is more of a spur.

Keywords: developed countries, developing countries, content analysis, intellectual capital disclosure

Procedia PDF Downloads 170
5717 Paradigms of Assessment, Valuation and Quantification to Trade Ecosystem Services: A Review Focusing on Mangroves and Wetlands

Authors: Rama Seth, Luise Noring, Pratim Majumdar

Abstract:

Based on an extensive literature review, this paper presents distinct approaches to value, quantify and trade ecosystem services, with particular emphasis on services provided by mangroves and wetlands. Building on diverse monetary and market-based systems for the improved allocation of natural resources, such trading and exchange-based methods can help tackle the degradation of ecosystem services in a more targeted and structured manner than achievable with stand-alone policy and administrative regulations. Using various threads of literature, the paper proposes a platform that serves as the skeletal foundation for developing an efficient global market for ecosystem services trading. The paper bridges a significant research and practice gap by recommending how to establish an equilibrium in the biosphere via trading mechanisms while also discovering other research gaps and future research potential in the domain of ecosystem valuation.

Keywords: environment, economics, mangroves, wetlands, markets, ESG, global capital, climate investments, valuation, ecosystem services

Procedia PDF Downloads 251
5716 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer

Authors: Maziyar Nouraee

Abstract:

Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.

Keywords: electronic commerce, electronic market, B2B trade, supply chain management

Procedia PDF Downloads 392
5715 Achieving Success in NPD Projects

Authors: Ankush Agrawal, Nadia Bhuiyan

Abstract:

The new product development (NPD) literature emphasizes the importance of introducing new products on the market for continuing business success. New products are responsible for employment, economic growth, technological progress, and high standards of living. Therefore, the study of NPD and the processes through which they emerge is important. The goal of our research is to propose a framework of critical success factors, metrics, and tools and techniques for implementing metrics for each stage of the new product development (NPD) process. An extensive literature review was undertaken to investigate decades of studies on NPD success and how it can be achieved. These studies were scanned for common factors for firms that enjoyed success of new products on the market. The paper summarizes NPD success factors, suggests metrics that should be used to measure these factors, and proposes tools and techniques to make use of these metrics. This was done for each stage of the NPD process, and brought together in a framework that the authors propose should be followed for complex NPD projects. While many studies have been conducted on critical success factors for NPD, these studies tend to be fragmented and focus on one or a few phases of the NPD process.

Keywords: new product development, performance, critical success factors, framework

Procedia PDF Downloads 398
5714 The Effectiveness of Cash Flow Management by SMEs in the Mafikeng Local Municipality of South Africa

Authors: Ateba Benedict Belobo, Faan Pelser, Ambe Marcus

Abstract:

Aims: This study arise from repeated complaints from both electronic mails about the underperformance of Mafikeng Small and Medium-Size enterprises after the global financial crisis. The authors were on the view that, this poor performance experienced could be as a result of the negative effects on the cash flow of these businesses due to volatilities in the business environment in general prior to the global crisis. Thus, the paper was mainly aimed at determining the shortcomings experienced by these SMEs with regards to cash flow management. It was also aimed at suggesting possible measures to improve cash flow management of these SMEs in this tough time. Methods: A case study was conducted on 3 beverage suppliers, 27 bottle stores, 3 largest fast consumer goods super markets and 7 automobiles enterprises in the Mafikeng local municipality. A mixed method research design was employed and a purposive sampling was used in selecting SMEs that participated. Views and experiences of participants of the paper were captured through in-depth interviews. Data from the empirical investigation were interpreted using open coding and a simple percentage formula. Results: Findings from the empirical research reflected that majority of Mafikeng SMEs suffer poor operational performance prior to the global financial crisis primarily as a result of poor cash flow management. However, the empirical outcome also indicted other secondary factors contributing to this poor operational performance. Conclusion: Finally, the authorsproposed possible measures that could be used to improve cash flow management and to solve other factors affecting operational performance of SMEs in the Mafikeng local municipality in other to achieve a better business performance.

Keywords: cash flow, business performance, global financial crisis, SMEs

Procedia PDF Downloads 439
5713 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
5712 Receptiveness of Market Segmentation Towards Online Shopping Attitude: A Quality Management Strategy for Online Passenger Car Market

Authors: Noor Hasmini Abdghani, Nik Kamariah Nikmat, Nor Hayati Ahmad

Abstract:

Rapid growth of the internet technology led to changes in the consumer lifestyles. This involved customer buying behaviour-based internet that create new kind of buying strategy. Hence, it has summoned many of world firms including Malaysia to generate new quality strategy in preparation to face new customer buying lifestyles. Particularly, this study focused on identifying online customer segment of automobile passenger car customers. Secondly, the objective is to understand online customer’s receptiveness towards internet technologies. This study distributed 700 questionnaires whereby 582 were returned representing 83% response rate. The data were analysed using factor and regression analyses. The result from the factor analysis precipitates four online passenger car segmentations in Malaysia, which are: Segment (1)- Automobile Online shopping Preferences, Segment (2)- Automobile Online Brand Comparison, Segment (3)- Automobile Online Information Seeking and Segment (4)- Automobile Offline Shopping Preferences. In understanding the online customer’s receptiveness towards internet, the regression result shows that there is significant relationship between each of four segments of online passenger car customer with attitude towards automobile online shopping. This implies that, for online customers to have receptiveness toward internet technologies, he or she must have preferences toward online shopping or at least prefer to browse any related information online even if the actual purchase is made at the traditional store. With this proposed segmentation strategy, the firms especially the automobile firms will be able to understand their online customer behavior. At least, the proposed segmentation strategy will help the firms to strategize quality management approach for their online customers’ buying decision making.

Keywords: Automobile, Market Segmentation, Online Shopping Attitude, Quality Management Strategy

Procedia PDF Downloads 540
5711 Built-Own-Lease-Transfer (BOLT): “An Alternative Model to Subsidy Schemes in Public Private Partnership Projects”

Authors: Nirali Shukla, Neel Shah

Abstract:

The World Bank Institute (WBI) is undertaking a review of government interventions aimed at facilitating sustainable investment in public private partnerships (PPPs) in various under developed countries. The study presents best practice for applying financial model to make PPPs financially viable. The lessons presented here, if properly implemented, can help countries use limited funds to attract more private investment, get more infrastructure built and, as a result, achieve greater economic growth. The four countries Brazil, Colombia, Mexico, and India in total develop an average of nearly US$50 billion in PPPs per year. There are a range of policies and institutional arrangements governments use to provide subsidies to PPPs. For example, some countries have created dedicated agencies, or ‘funds’, capitalized with money from the national budget to manage and allocate subsidies. Other countries have established well-defined policies for appropriating subsidies on an ad hoc basis through an annual budget process. In this context, subsidies are direct fiscal contributions or grants paid by the government to a project when revenues from user fees are insufficient to cover all capital and operating costs while still providing private investors with a reasonable rate of return. Without subsidies, some infrastructure projects that would provide economic or social gains, but are not financially viable, would go undeveloped. But the Financial model of BOLT (PPP) model described in this study suggests that it is most feasible option rather than going for subsidy schemes for making infrastructure projects financially viable. The major advantage for implementing this model is the government money is saved and can be used for other projects as well as the private investors are getting better rate of return than subsidized schemes.

Keywords: PPP, BOLT, subsidy schemes, financial model

Procedia PDF Downloads 765
5710 Compensation Mechanism Applied to Eco-Tourism Development in China

Authors: Min Wei

Abstract:

With the rapid development eco-tourism resources exploitation, the conflict between economy development and ecological environment is increasingly prominent. The environmental protection laws, however, are lack of necessary legal support to use market mechanism and economic means to carry out ecological compensation and promote the environmental protection. In order to protect the sustainable utilization of eco-tourism resources and the benign development of the interests of various stakeholders, protection of ecological compensation balance should be put on schedule. The main role of institutional guarantee in eco-tourism resources' value compensation mechanism is to solve the question 'how to guarantee compensation'. The evaluation of the game model in this paper reveals that interest balance of stakeholders is an important cornerstone to obtain the sustainable development. The findings result in constructing a sustainable development pattern of eco- tourism industry based on tripartite game equilibrium among government, tourism enterprises and tourists. It is important that the social, economic and ecological environment should be harmonious development during the pursuit of eco-tourism growth.

Keywords: environmental protection, ecological compensation, eco-tourism, market mechanism

Procedia PDF Downloads 385
5709 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110