Search results for: evolutionary automatic programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2084

Search results for: evolutionary automatic programming

74 Clinical Cases of Rare Types of 'Maturity Onset Diabetes of the Young' Diabetes

Authors: Alla Ovsyannikova, Oksana Rymar, Elena Shakhtshneider, Mikhail Voevoda

Abstract:

In Siberia endocrinologists increasingly noted young patients with the course of diabetes mellitus differing from 1 and 2 types. Therefore we did a molecular genetic study for this group of patients to verify the monogenic forms of diabetes mellitus in them and researched the characteristics of this pathology. When confirming the monogenic form of diabetes, we performed a correction therapy for many patients (transfer from insulin to tablets), prevented specific complications, examined relatives and diagnosed their diabetes at the preclinical stage, revealed phenotypic characteristics of the pathology which led to the high significance of this work. Materials and Methods: We observed 5 patients (4 families). We diagnosed MODY (Maturity Onset Diabetes of the Young) during the molecular genetic testing (direct automatic sequencing). All patients had a full clinical examination, blood samples for biochemical research, determination of C-peptide and TSH, antibodies to b-cells, microalbuminuria, abdominal ultrasound, heart and thyroid ultrasound, examination of ophthalmologist. Results: We diagnosed 3 rare types of MODY: two women had MODY8, one man – MODY6 and man and his mother - MODY12. Patients with types 8 and 12 had clinical features. Age of onset hyperglycemia ranged from 26 to 34 years. In a patient with MODY6 fasting hyperglycemia was detected during a routine examination. Clinical symptoms, complications were not diagnosed. The patient observes a diet. In the first patient MODY8 was detected during first pregnancy, she had itchy skin and mostly postprandial hyperglycemia. Upon examination we determined glycated hemoglobin 7.5%, retinopathy, non-proliferative stage, peripheral neuropathy. She uses a basic bolus insulin therapy. The second patient with MODY8 also had clinical manifestations of hyperglycemia (pruritus, thirst), postprandial hyperglycemia and diabetic nephropathy, a stage of microalbuminuria. The patient was diagnosed autoimmune thyroiditis. She used inhibitors of DPP-4. The patient with MODY12 had an aggressive course. In the detection of hyperglycemia he had complaints of visual impairment, intense headaches, leg cramps. The patient had a history of childhood convulsive seizures of non-epileptic genesis, without organic pathology, which themselves were stopped at the age of 12 years. When we diagnosed diabetes a patient was 28 years, he had hypertriglyceridemia, atherosclerotic plaque in the carotid artery, proliferative retinopathy (lacerocoagulation). Diabetes and early myocardial infarction were observed in three cases in family. We prescribe therapy with sulfonylureas and SGLT-2 inhibitors with a positive effect. At the patient's mother diabetes began at a later age (30 years) and a less aggressive course was observed. She also has hypertriglyceridemia and uses oral hypoglycemic drugs. Conclusions: 1) When young patients with hyperglycemia have extrapancreatic pathologies and diabetic complications with a short duration of diabetes we can assume they have one of type of MODY diabetes. 2) In patients with monogenic forms of diabetes mellitus, the clinical manifestations of hyperglycemia in each succeeding generation are revealed at an earlier age. Research had increased our knowledge of the monogenic forms of diabetes. The reported study was supported by RSCF, research project No. 14-15-00496-P.

Keywords: diabetes mellitus, MODY diabetes, monogenic forms, young patients

Procedia PDF Downloads 223
73 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 334
72 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: bioeconomy, lipids, microalgae, proteins, saccharides

Procedia PDF Downloads 225
71 Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings

Authors: Nadine Maier, Martin Mensinger, Enea Tallushi

Abstract:

In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction.

Keywords: buckling behavior, eccentric load introduction, incremental launching, large scale buckling tests, multi axial stress states, parametric numerical modelling

Procedia PDF Downloads 83
70 Automated System: Managing the Production and Distribution of Radiopharmaceuticals

Authors: Shayma Mohammed, Adel Trabelsi

Abstract:

Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.

Keywords: automated system, management, radiopharmacy, technical papers

Procedia PDF Downloads 131
69 Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)

Authors: E. A. Abdel-Hakim

Abstract:

The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage.

Keywords: juvenile hormone, respiratory metabolism, Sesamia cretica, wandering phase

Procedia PDF Downloads 270
68 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 111
67 A Randomized, Controlled Trial to Test Habit Formation Theory for Low Intensity Physical Exercise Promotion in Older Adults

Authors: Patrick Louie Robles, Jerry Suls, Ciaran Friel, Mark Butler, Samantha Gordon, Frank Vicari, Joan Duer-Hefele, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence finds increasing physical activity is positively associated with health benefits. Behavior change techniques (BCTs) have demonstrated some effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a personalized trials (N-of-1) design, delivered virtually, to evaluate the efficacy of using five BCTs in increasing low-intensity physical activity (by 2,000 steps of walking per day) in adults aged 45-75 years old. The 5 BCTs described in habit formation theory are goal setting, action planning, rehearsal, rehearsal in a consistent context, and self-monitoring. The study recruited health system employees in the target age range who had no mobility restrictions and expressed interest in increasing their daily activity by a minimum of 2,000 steps per day at least five days per week. Participants were sent a Fitbit Charge 4 fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. Participants then engaged remotely with a clinical research coordinator to establish a “walking plan” that included a time and day interval (e.g., between 7am -8am on Monday-Friday), a location for the walk (e.g., park), and how much time the plan would need to achieve a minimum of 2,000 steps over their baseline average step count (20 minutes). All elements of the walking plan were required to remain consistent throughout the study. In the 10-week intervention phase of the study, participants received all five BCTs in a single, time-sensitive text message. The text message was delivered 30 minutes prior to the established walk time and signaled participants to begin walking when the context (i.e., day of the week, time of day) they pre-selected is encountered. Participants were asked to log both the start and conclusion of their activity session by pressing a button on the Fitbit tracker. Within 30 minutes of the planned conclusion of the activity session, participants received a text message with a link to a secure survey. Here, they noted whether they engaged in the BCTs when prompted and completed an automaticity survey to identify how “automatic” their walking behavior had become. At the end of their trial, participants received a personalized summary of their step data over time, helping them learn more about their responses to the five BCTs. Whether the use of these 5 ‘habit formation’ BCTs in combination elicits a change in physical activity behavior among older adults will be reported. This study will inform the feasibility of a virtually-delivered N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 114
66 Identifying Risk Factors for Readmission Using Decision Tree Analysis

Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka

Abstract:

This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.

Keywords: decision tree, hospital, internal medicine, readmission

Procedia PDF Downloads 221
65 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management

Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin

Abstract:

The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.

Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus

Procedia PDF Downloads 91
64 Nutrition Budgets in Uganda: Research to Inform Implementation

Authors: Alexis D'Agostino, Amanda Pomeroy

Abstract:

Background: Resource availability is essential to effective implementation of national nutrition policies. To this end, the SPRING Project has collected and analyzed budget data from government ministries in Uganda, international donors, and other nutrition implementers to provide data for the first time on what funding is actually allocated to implement nutrition activities named in the national nutrition plan. Methodology: USAID’s SPRING Project used the Uganda Nutrition Action Plan (UNAP) as the starting point for budget analysis. Thorough desk reviews of public budgets from government, donors, and NGOs were mapped to activities named in the UNAP and validated by key informants (KIs) across the stakeholder groups. By relying on nationally-recognized and locally-created documents, SPRING provided a familiar basis for discussions to increase credibility and local ownership of findings. Among other things, the KIs validated the amount, source, and type (specific or sensitive) of funding. When only high-level budget data were available, KIs provided rough estimates of the percentage of allocations that were actually nutrition-relevant, allowing creation of confidence intervals around some funding estimates. Results: After validating data and narrowing in on estimates of funding to nutrition-relevant programming, researchers applied a formula to estimate overall nutrition allocations. In line with guidance by the SUN Movement and its three-step process, nutrition-specific funding was counted at 100% of its allocation amount, while nutrition sensitive funding was counted at 25%. The vast majority of nutrition funding in Uganda is off-budget, with over 90 percent of all nutrition funding is provided outside of the government system. Overall allocations are split nearly evenly between nutrition-specific and –sensitive activities. In FY 2013/14, the two-year study’s baseline year, on- and off-budget funding for nutrition was estimated to be around 60 million USD. While the 60 million USD allocations compare favorably to the 66 million USD estimate of the cost of the UNAP, not all activities are sufficiently funded. Those activities with a focus on behavior change were the most underfunded. In addition, accompanying qualitative research suggested that donor funding for nutrition activities may shift government funding into other areas of work, making it difficult to estimate the sustainability of current nutrition investments.Conclusions: Beyond providing figures, these estimates can be used together with the qualitative results of the study to explain how and why these amounts were allocated for particular activities and not others, examine the negotiation process that occurred, and suggest options for improving the flow of finances to UNAP activities for the remainder of the policy tenure. By the end of the PBN study, several years of nutrition budget estimates will be available to compare changes in funding over time. Halfway through SPRING’s work, there is evidence that country stakeholders have begun to feel ownership over the ultimate findings and some ministries are requesting increased technical assistance in nutrition budgeting. Ultimately, these data can be used within organization to advocate for more and improved nutrition funding and to improve targeting of nutrition allocations.

Keywords: budget, nutrition, financing, scale-up

Procedia PDF Downloads 410
63 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 170
62 The Efficiency Analysis in the Health Sector: Marmara Region

Authors: Hale Kirer Silva Lecuna, Beyza Aydin

Abstract:

Health is one of the main components of human capital and sustainable development, and it is very important for economic growth. Health economics, which is an indisputable part of the science of economics, has five stages in general. These are health and development, financing of health services, economic regulation in the health, allocation of resources and efficiency of health services. A well-developed and efficient health sector plays a major role by increasing the level of development of countries. The most crucial pillars of the health sector are the hospitals that are divided into public and private. The main purpose of the hospitals is to provide more efficient services. Therefore the aim is to meet patients’ satisfaction by increasing the service quality. Health-related studies in Turkey date back to the Ottoman and Seljuk Empires. In the near past, Turkey applied 'Health Sector Transformation Programs' under different titles between 2003 and 2010. Our aim in this paper is to measure how effective these transformation programs are for the health sector, to see how much they can increase the efficiency of hospitals over the years, to see the return of investments, to make comments and suggestions on the results, and to provide a new reference for the literature. Within this framework, the public and private hospitals in Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, Istanbul, Kirklareli, Kocaeli, Sakarya, Tekirdağ, Yalova will be examined by using Data Envelopment Analysis (DEA) for the years between 2000 and 2019. DEA is a linear programming-based technique, which gives relatively good results in multivariate studies. DEA basically estimates an efficiency frontier and make a comparison. Constant returns to scale and variable returns to scale are two most commonly used DEA methods. Both models are divided into two as input and output-oriented. To analyze the data, the number of personnel, number of specialist physicians, number of practitioners, number of beds, number of examinations will be used as input variables; and the number of surgeries, in-patient ratio, and crude mortality rate as output variables. 11 hospitals belonging to the Marmara region were included in the study. It is seen that these hospitals worked effectively only in 7 provinces (Balıkesir, Bilecik, Bursa, Edirne, İstanbul, Kırklareli, Yalova) for the year 2001 when no transformation program was implemented. After the transformation program was implemented, for example, in 2014 and 2016, 10 hospitals (Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kocaeli, Kırklareli, Tekirdağ, Yalova) were found to be effective. In 2015, ineffective results were observed for Sakarya, Tekirdağ and Yalova. However, since these values are closer to 1 after the transformation program, we can say that the transformation program has positive effects. For Sakarya alone, no effective results have been achieved in any year. When we look at the results in general, it shows that the transformation program has a positive effect on the effectiveness of hospitals.

Keywords: data envelopment analysis, efficiency, health sector, Marmara region

Procedia PDF Downloads 107
61 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 11
60 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 57
59 Culturally Relevant Education Challenges and Threats in the US Secondary Classroom

Authors: Owen Cegielski, Kristi Maida, Danny Morales, Sylvia L. Mendez

Abstract:

This study explores the challenges and threats US secondary educators experience in incorporating culturally relevant education (CRE) practices in their classrooms. CRE is a social justice pedagogical practice used to connect student’s cultural references to academic skills and content, to promote critical reflection, to facilitate cultural competence, and to critique discourses of power and oppression. Empirical evidence on CRE demonstrates positive student educational outcomes in terms of achievement, engagement, and motivation. Additionally, due to the direct focus on uplifting diverse cultures through the curriculum, students experience greater feelings of belonging, increased interest in the subject matter, and stronger racial/ethnic identities. When these teaching practices are in place, educators develop deeper relationships with their students and appreciate the multitude of gifts they (and their families) bring to the classroom environment. Yet, educators regularly report being unprepared to incorporate CRE in their daily teaching practice and identify substantive gaps in their knowledge and skills in this area. Often, they were not exposed to CRE in their educator preparation program, nor do they receive adequate support through school- or district-wide professional development programming. Through a descriptive phenomenological research design, 20 interviews were conducted with a diverse set of secondary school educators to explore the challenges and threats they experience in incorporating CRE practices in their classrooms. The guiding research question for this study is: What are the challenges and threats US secondary educators face when seeking to incorporate CRE practices in their classrooms? Interviews were grounded by the theory of challenge and threat states, which highlights the ways in which challenges and threats are appraised and how resources factor into emotional valence and perception, as well as the potential to meet the task at hand. Descriptive phenomenological data analysis strategies were utilized to develop an essential structure of the educators’ views of challenges and threats in regard to incorporating CRE practices in their secondary classrooms. The attitude of the phenomenological reduction method was adopted, and the data were analyzed through five steps: sense of the whole, meaning units, transformation, structure, and essential structure. The essential structure that emerged was while secondary educators display genuine interest in learning how to successfully incorporate CRE practices, they perceive it to be a challenge (and not a threat) due to lack of exposure which diminishes educator capacity, comfort, and confidence in employing CRE practices. These findings reveal the value of attending to emotional valence and perception of CRE in promoting this social justice pedagogical practice. Findings also reveal the importance of appropriately resourcing educators with CRE support to ensure they develop and utilize this practice.

Keywords: culturally relevant education, descriptive phenomenology, social justice practice, US secondary education

Procedia PDF Downloads 158
58 Combined Treatment with Microneedling and Chemical Peels Improves Periorbital Wrinkles and Skin Laxity

Authors: G. Kontochristopoulos, T. Spiliopoulos, V. Markantoni, E. Platsidaki, A. Kouris, E. Balamoti, C. Bokotas, G. Haidemenos

Abstract:

Introduction: There is a high patient demand for periorbital rejuvenation since the facial area is often the first to show visible signs of aging. With advancing age, there are sometimes marked changes that occur in the skin, fat, muscle and bone of the periorbital region, resulting to wrinkles and skin laxity. These changes are among the easiest areas to correct using several minimally invasive techniques, which have become increasingly popular over the last decade. Lasers, radiofrequency, botulinum toxin, fat grafting and fillers are available treatments sometimes in combination to traditional blepharoplasty. This study attempts to show the benefits of a minimally invasive approach to periorbital wrinkles and skin laxity that combine microneedling and 10% trichloroacetic acid (TCA) peels. Method: Eleven female patients aged 34-72 enrolled in the study. They all gave informed consent after receiving detailed information regarding the treatment procedure. Exclusion criteria in the study were previous treatment for the same condition in the past six months, pregnancy, allergy or hypersensitivity to the components, infection, inflammation and photosensitivity on the affected region. All patients had diffuse periorbital wrinkles and mild to moderate upper or lower eyelid skin laxity. They were treated with Automatic Microneedle Therapy System-Handhold and topical application of 10% trichloroacetic acid solution to each periorbital area for five minutes. Needling at a 0,25 mm depth was performed in both latelar (x-y) directions. Subsequently, the peeling agent was applied to each periorbital area for five minutes. Patients were subjected to the above combination every two weeks for a series of four treatments. Subsequently they were followed up regularly every month for two months. The effect was photo-documented. A Physician's and a Patient's Global Assessment Scale was used to evaluate the efficacy of the treatment (0-25% indicated poor response, 25%-50% fair, 50%-75% good and 75%-100% excellent response). Safety was assessed by monitoring early and delayed adverse events. Results: At the end of the study, almost all patients demonstrated significant aesthetic improvement. Physicians assessed a fair and a good improvement in 9(81.8% of patients) and 2(18.1% of patients) participants respectively. Patients Global Assessment rated a fair and a good response in 6 (54.5%) and 5 (45.4%) participants respectively. The procedure was well tolerated and all patients were satisfied. Mild discomfort and transient erythema were quite common during or immediately after the procedure, however only temporary. During the monthly follow up, no complications or scars were observed. Conclusions: Microneedling is known as a simple, office–based collagen induction therapy. Low concentration TCA solution applied to the epidermis that has been more permeable by microneedling, can reach the dermis more effectively. In the present study, chemical peels with 10% TCA acted as an adjuvant to microneedling, as it causes controlled skin damage, promoting regeneration and rejuvenation of tissues. This combined therapy improved periorbital fine lines, wrinkles, and overall appearance of the skin. Thus it constitutes an alternative treatment of periorbital skin aging, with encouraging results and minor side-effects.

Keywords: chemical peels, microneedling, periorbital wrinkles, skin laxity

Procedia PDF Downloads 327
57 Conceptualizing a Biomimetic Fablab Based on the Makerspace Concept and Biomimetics Design Research

Authors: Petra Gruber, Ariana Rupp, Peter Niewiarowski

Abstract:

This paper presents a concept for a biomimetic fablab as a physical space for education, research and development of innovation inspired by nature. Biomimetics as a discipline finds increasing recognition in academia and has started to be institutionalized at universities in programs and centers. The Biomimicry Research and Innovation Center was founded in 2012 at the University of Akron as an interdisciplinary venture for the advancement of innovation inspired by nature and is part of a larger community fostering the approach of bioimimicry in the Great Lakes region of the US. With 30 faculty members the center has representatives from Colleges of Arts and Sciences (e.g., biology, chemistry, geoscience, and philosophy) Engineering (e.g., mechanical, civil, and biomedical), Polymer Science, and Myers School of Arts. A platform for training PhDs in Biomimicry (17 students currently enrolled) is co-funded by educational institutions and industry partners. Research at the center touches on many areas but is also currently biased towards materials and structures, with highlights being materials based on principles found in spider silk and gecko attachment mechanisms. As biomimetics is also a novel scientific discipline, there is little standardisation in programming and the equipment of research facilities. As a field targeting innovation, design and prototyping processes are fundamental parts of the developments. For experimental design and prototyping, MIT's maker space concept seems to fit well to the requirements, but facilities need to be more specialised in terms of accessing biological systems and knowledge, specific research, production or conservation requirements. For the education and research facility BRIC we conceptualize the concept of a biomimicry fablab, that ties into the existing maker space concept and creates the setting for interdisciplinary research and development carried out in the program. The concept takes on the process of biomimetics as a guideline to define core activities that shall be enhanced by the allocation of specific spaces and tools. The limitations of such a facility and the intersections to further specialised labs housed in the classical departments are of special interest. As a preliminary proof of concept two biomimetic design courses carried out in 2016 are investigated in terms of needed tools and infrastructure. The spring course was a problem based biomimetic design challenge in collaboration with an innovation company interested in product design for assisted living and medical devices. The fall course was a solution based biomimetic design course focusing on order and hierarchy in nature with the goal of finding meaningful translations into art and technology. The paper describes the background of the BRIC center, identifies and discusses the process of biomimetics, evaluates the classical maker space concept and explores how these elements can shape the proposed research facility of a biomimetic fablab by examining two examples of design courses held in 2016.

Keywords: biomimetics, biomimicry, design, biomimetic fablab

Procedia PDF Downloads 251
56 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 116
55 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 136
54 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 53
53 Engineering Economic Analysis of Implementing a Materials Recovery Facility in Jamaica: A Green Industry Approach towards a Sustainable Developing Economy

Authors: Damian Graham, Ashleigh H. Hall, Damani R. Sulph, Michael A. James, Shawn B. Vassell

Abstract:

This paper assesses the design and feasibility of a Materials Recovery Facility (MRF) in Jamaica as a possible green industry approach to the nation’s economic and solid waste management problems. Jamaica is a developing nation that is vulnerable to climate change that can affect its blue economy and tourism on which it is heavily reliant. Jamaica’s National Solid Waste Management Authority (NSWMA) collects only a fraction of all the solid waste produced annually which is then transported to dumpsites. The remainder is either burnt by the population or disposed of illegally. These practices negatively impact the environment, threaten the sustainability of economic growth from blue economy and tourism and its waste management system is predominantly a cost centre. The implementation of an MRF could boost the manufacturing sector, contribute to economic growth, and be a catalyst in creating a green industry with multiple downstream value chains with supply chain linkages. Globally, there is a trend to reuse and recycle that created an international market for recycled solid waste. MRFs enable the efficient sorting of solid waste into desired recoverable materials thus providing a gateway for entrance to the international trading of recycled waste. Research into the current state and effort to improve waste management in Jamaica in contrast with the similar and more advanced territories are outlined. The study explores the concept of green industrialization and its applicability to vulnerable small state economies like Jamaica. The study highlights the possible contributions and benefits derived from MRFs as a seeding factory that can anchor the reverse and forward logistics of other green industries as part of a logistic-cantered economy. Further, the study showcases an engineering economic analysis that assesses the viability of the implementation of an MRF in Jamaica. This research outlines the potential cost of constructing and operating an MRF and provides a realistic cash flow estimate to establish a baseline for profitability. The approach considers quantitative and qualitative data, assumptions, and modelling using industrial engineering tools and techniques that are outlined. Techniques of facility planning, system analysis and operations research with a focus on linear programming techniques are expressed. Approaches to overcome some implementation challenges including policy, technology and public education are detailed. The results of this study present a reasonable judgment of the prospects of incorporating an MRF to improve Jamaica’s solid waste management and contribute to socioeconomic and environmental benefits and an alternate pathway for economic sustainability.

Keywords: engineering-economic analysis, facility design, green industry, MRF, manufacturing, plant layout, solid-waste management, sustainability, waste disposal

Procedia PDF Downloads 194
52 Co-Movement between Financial Assets: An Empirical Study on Effects of the Depreciation of Yen on Asia Markets

Authors: Yih-Wenn Laih

Abstract:

In recent times, the dependence and co-movement among international financial markets have become stronger than in the past, as evidenced by commentaries in the news media and the financial sections of newspapers. Studying the co-movement between returns in financial markets is an important issue for portfolio management and risk management. The realization of co-movement helps investors to identify the opportunities for international portfolio management in terms of asset allocation and pricing. Since the election of the new Prime Minister, Shinzo Abe, in November 2012, the yen has weakened against the US dollar from the 80 to the 120 level. The policies, known as “Abenomics,” are to encourage private investment through a more aggressive mix of monetary and fiscal policy. Given the close economic relations and competitions among Asia markets, it is interesting to discover the co-movement relations, affected by the depreciation of yen, between stock market of Japan and 5 major Asia stock markets, including China, Hong Kong, Korea, Singapore, and Taiwan. Specifically, we devote ourselves to measure the co-movement of stock markets between Japan and each one of the 5 Asia stock markets in terms of rank correlation coefficients. To compute the coefficients, return series of each stock market is first fitted by a skewed-t GARCH (generalized autoregressive conditional heteroscedasticity) model. Secondly, to measure the dependence structure between matched stock markets, we employ the symmetrized Joe-Clayton (SJC) copula to calculate the probability density function of paired skewed-t distributions. The joint probability density function is then utilized as the scoring scheme to optimize the sequence alignment by dynamic programming method. Finally, we compute the rank correlation coefficients (Kendall's  and Spearman's ) between matched stock markets based on their aligned sequences. We collect empirical data of 6 stock indexes from Taiwan Economic Journal. The data is sampled at a daily frequency covering the period from January 1, 2013 to July 31, 2015. The empirical distributions of returns indicate fatter tails than the normal distribution. Therefore, the skewed-t distribution and SJC copula are appropriate for characterizing the data. According to the computed Kendall’s τ, Korea has the strongest co-movement relation with Japan, followed by Taiwan, China, and Singapore; the weakest is Hong Kong. On the other hand, the Spearman’s ρ reveals that the strength of co-movement between markets with Japan in decreasing order are Korea, China, Taiwan, Singapore, and Hong Kong. We explore the effects of “Abenomics” on Asia stock markets by measuring the co-movement relation between Japan and five major Asia stock markets in terms of rank correlation coefficients. The matched markets are aligned by a hybrid method consisting of GARCH, copula and sequence alignment. Empirical experiments indicate that Korea has the strongest co-movement relation with Japan. The strength of China and Taiwan are better than Singapore. The Hong Kong market has the weakest co-movement relation with Japan.

Keywords: co-movement, depreciation of Yen, rank correlation, stock market

Procedia PDF Downloads 212
51 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)

Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida

Abstract:

Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.

Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences

Procedia PDF Downloads 24
50 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 154
49 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 230
48 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 174
47 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions

Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule

Abstract:

Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.

Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination

Procedia PDF Downloads 102
46 Assessing of Social Comfort of the Russian Population with Big Data

Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro

Abstract:

The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.

Keywords: big data, Google trends, integral indicator, social comfort

Procedia PDF Downloads 177
45 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 215