Search results for: energy performance assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23574

Search results for: energy performance assessment

21564 Role of Collaborative Cultural Model to Step on Cleaner Energy: A Case of Kathmandu City Core

Authors: Bindu Shrestha, Sudarshan R. Tiwari, Sushil B. Bajracharya

Abstract:

Urban household cooking fuel choice is highly influenced by human behavior and energy culture parameters such as cognitive norms, material culture and practices. Although these parameters have a leading role in Kathmandu for cleaner households, they are not incorporated in the city’s energy policy. This paper aims to identify trade-offs to transform resident behavior in cooking pattern towards cleaner technology from the questionnaire survey, observation, mapping, interview, and quantitative analysis. The analysis recommends implementing a Collaborative Cultural Model (CCM) for changing impact on the neighborhood from the policy level. The results showed that each household produces 439.56 kg of carbon emission each year and 20 percent used unclean technology due to low-income level. Residents who used liquefied petroleum gas (LPG) as their cooking fuel suffered from an energy crisis every year that has created fuel hoarding, which ultimately creates more energy demand and carbon exposure. In conclusion, the carbon emission can be reduced by improving the residents’ energy consumption culture. It recommended the city to use holistic action of changing habits as soft power of collaboration in two-way participation approach within residents, private sectors, and government to change their energy culture and behavior in policy level.

Keywords: energy consumption pattern, collaborative cultural model, energy culture, fuel stacking

Procedia PDF Downloads 134
21563 Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050

Authors: Ali Hashemifarzad, Jens Zum Hingst

Abstract:

The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a.

Keywords: energy demand, energy transition, German Energiewende, 100% renewable energy production

Procedia PDF Downloads 134
21562 Great Food, No Atmosphere: A Review of Performance Nutrition for Application to Extravehicular Activities in Spaceflight

Authors: Lauren E. Church

Abstract:

Background: Extravehicular activities (EVAs) are a critical aspect of missions aboard the International Space Station (ISS). It has long been noted that the spaceflight environment and the physical demands of EVA cause physiological and metabolic changes in humans; this review aims to combine these findings with nutritional studies in analogues of the spaceflight and EVA environments to make nutritional recommendations for astronauts scheduled for and immediately returning from EVAs. Results: Energy demands increase during orbital spaceflight and see further increases during EVA. Another critical element of EVA nutrition is adequate hydration. Orbital EVA appears to provide adequate hydration under current protocol, but during lunar surface EVA (LEVA) and in a 10km lunar walk-back test astronauts have stated that up to 20% more water was needed. Previous attempts for in-suit edible sustenance have not been adequately taken up by astronauts to be economically viable. In elite endurance athletes, a mixture of glucose and fructose is used in gels, improving performance. Discussion: A combination of non-caffeinated energy drink and simple water should be available for astronauts during EVA, allowing more autonomy. There should also be provision of gels or a similar product containing appropriate sodium levels to maintain hydration, but not so much as to hyperhydrate through renal water reabsorption. It is also suggested that short breaks be built into the schedule of EVAs for these gels to be consumed, as it is speculated that reason for low uptake of in-suit sustenance is the lack of time available in which to consume it.

Keywords: astronaut, nutrition, space, sport

Procedia PDF Downloads 128
21561 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09 ° E/W and +/- 0.07 ° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: satellite, GEO, collocation, risk assessment

Procedia PDF Downloads 396
21560 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification

Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto

Abstract:

Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.

Keywords: membranes, 2D materials, hydrogen purification, nanocomposites

Procedia PDF Downloads 134
21559 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 147
21558 Vulnerability Assessment of Vertically Irregular Structures during Earthquake

Authors: Pranab Kumar Das

Abstract:

Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.

Keywords: ductility, stress concentration, vertically irregular structure, vulnerability

Procedia PDF Downloads 229
21557 Middle-Level Management Involvement in Strategy Process, and Organizational Performance

Authors: Mazyar Taghavi

Abstract:

This research examines middle-level managers’ involvement in strategy process in 15 manufacturing and service companies in Iran. We considered two dominant theoretical arguments for expecting a positive association. According to the first direction involvement improves organizational performance by improving the quality of strategic decisions. According to the second track, middle managers contribute to increased levels of performance through strategic consensus among them. Results indicate that involvement in the strategy is related to organizational performance. Involvement is associated with consensus (i.e. strategic understanding and commitment) among middle-level managers. However, findings indicate that consensus is not related to the organizational performance.

Keywords: middle-level management, strategy process, organizational performance, strategy consensus

Procedia PDF Downloads 439
21556 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery

Authors: Abebe Taye

Abstract:

The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.

Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability

Procedia PDF Downloads 75
21555 Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs

Authors: Ashish Soni, Suman Kalyan Pal

Abstract:

Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices.

Keywords: transient absorption, optoelectronics, 2D materials, TMDCs, exciton

Procedia PDF Downloads 68
21554 Screening Ecological Risk Assessment at an Old Abandoned Mine in Northern Taiwan

Authors: Hui-Chen Tsai, Chien-Jen Ho, Bo-Wei Power Liang, Ying Shen, Yi-Hsin Lai

Abstract:

Former Taiwan Metal Mining Corporation and its associated 3 wasted flue gas tunnels, hereinafter referred to as 'TMMC', was contaminated with heavy metals, Polychlorinated biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPHs) in soil. Since the contamination had been exposed and unmanaged in the environment for more than 40 years, the extent of the contamination area is estimated to be more than 25 acres. Additionally, TMMC is located in a remote, mountainous area where almost no residents are residing in the 1-km radius area. Thus, it was deemed necessary to conduct an ecological risk assessment in order to evaluate the details of future contaminated site management plan. According to the winter and summer, ecological investigation results, one type of endangered, multiple vulnerable and near threaten plant was discovered, as well as numerous other protected species, such as Crested Serpent Eagle, Crested Goshawk, Black Kite, Brown Shrike, Taiwan Blue Magpie were observed. Ecological soil screening level (Eco-SSLs) developed by USEPA was adopted as a reference to conduct screening assessment. Since all the protected species observed surrounding TMMC site were birds, screening ecological risk assessment was conducted on birds only. The assessment was assessed mainly based on the chemical evaluation, which the contamination in different environmental media was compared directly with the ecological impact levels (EIL) of each evaluation endpoints and the respective hazard quotient (HQ) and hazard index (HI) could be obtained. The preliminary ecological risk assessment results indicated HI is greater than 1. In other words, the biological stressors (birds) were exposed to the contamination, which was already exceeded the dosage that could cause unacceptable impacts to the ecological system. This result was mainly due to the high concentration of arsenic, metal and lead; thus it was suggested the above mention contaminants should be remediated as soon as possible or proper risk management measures should be taken.

Keywords: screening, ecological risk assessment, ecological impact levels, risk management

Procedia PDF Downloads 134
21553 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia

Authors: Habib Alshuwaikhat, Nahid Hossain

Abstract:

Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.

Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation

Procedia PDF Downloads 496
21552 How Hormesis Impacts Practice of Ecological Risk Assessment and Food Safety Assessment

Authors: Xiaoxian Zhang

Abstract:

Guidelines of ecological risk assessment (ERA) and food safety assessment (FSA) used nowadays, based on an S-shaped threshold dose-response curve (SDR), fail to consider hormesis, a reproducible biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in the real-life environment across multitudinous compounds on cells, organisms, populations, and even the ecosystem. Specifically, in SDR-based ERA and FSA practice, predicted no effect concentration (PNEC) is calculated separately for individual substances from no observed effect concentration (NOEC, usually equivalent to 10% effect concentration (EC10) of a contaminant or food condiment) over an assessment coefficient that is bigger than 1. Experienced researchers doubted that hormesis in the real-life environment might lead to a waste of limited human and material resources in ERA and FSA practice, but related data are scarce. In this study, hormetic effects on bioluminescence of Aliivibrio fischeri (A. f) induced by sulfachloropyridazine (SCP) under 40 conditions to simulate the real-life scenario were investigated, and hormetic effects on growth of human MCF-7 cells caused by brown sugar and mascavado sugar were found likewise. After comparison of related parameters, it has for the first time been proved that there is a 50% probability for safe concentration (SC) of contaminants and food condiments to fall within the hormetic-stimulatory range (HSR) or left to HSR, revealing the unreliability of traditional parameters in standardized (eco)toxicological studies, and supporting qualitatively and quantitatively the over-strictness of ERA and FSA resulted from misuse of SDR. This study provides a novel perspective for ERA and FSA practitioners that hormesis should dominate and conditions where SDR works should only be singled out on a specific basis.

Keywords: dose-response relationship, food safety, ecological risk assessment, hormesis

Procedia PDF Downloads 146
21551 Ratio Energy and Protein of Dietary Based on Rice Straw Ammoniated on Productivity of Male Simenthal Cattle

Authors: Mardiati Zain, Yetti Marlida, Elihasridas Elihasridas, Erpomen Erpomen, Andri Andri

Abstract:

Background: Livestock productivity is greatly influenced by the energy and protein balance in diet. This study aimed to determine the energy and protein balance of male Simenthal cattle diet with protein and energy levels. The experimental design used was a randomized block design (RBD) 2x3x3 factorial design. There are two factors namely A level of energy diet that is 65% and 70% TDN. Factor B is a protein level of diet used were 10, 12 and 14% and each treatment is repeated three times. The weight of Simenthal cattle used ranged between 240 - 300 kg. Diet consisted of ammoniated rice straw and concentrated with ratio 40:60. Concentrate consisted of palm kernel cake, rice brain, cassava, mineral, and urea. The variables measured were digestibility of dry matter, organic matter and fiber, dry matter intake, daily gain, feed efficiency and blood characteristic. Results: There was no interaction between protein and energy level of diet on the nutrients intake (DM intake, OM intake, CP intake), weight gain and efficiency (P < 0.01). There was an interaction between protein and energy level of diet on digestibility (DM, OM, CP and allantoin urine (P > 0.01) Nutrients intake decreases with increasing levels of energy and protein diet, while nutrient digestibility, Avarage daily gain and feed efficiency increases with increasing levels of energy and protein diet. Conclusions: The result can be concluded that the best treatment was A2B1 which is energy level 70% TDN and protein 10%, where are dry matter intake 7.66 kg/d, daily gain 1.25 kg/d, feed efficiency 16.12%, and dry matter and organic matter digestibility 64.08 and 69.42% respectively.

Keywords: energy and protein ratio, simenthal cattle, rice straw ammoniated, digestibility

Procedia PDF Downloads 356
21550 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 73
21549 Effects of Employees’ Training Program on the Performance of Small Scale Enterprises in Oyo State

Authors: Itiola Kehinde Adeniran

Abstract:

The study examined the effect of employees’ training on the performance of small scale enterprises in Oyo State. A structured questionnaire was used to collect data from 150 respondents through purposive sampling method. Linear regression was used with the aid of statistical package for social science (SPSS) version 20 to analyze the data collected in order to examine the effect of independent variable, employees’ training on dependent variable, performance (profit) of small scale enterprises. The result revealed that employees’ training has a significant effect on the performance of small scale enterprises. It was concluded that predictor variable namely (training) is 55.5% variance of enterprises performance (profitability). Therefore, the paper recommended that all small scale enterprises in Nigeria should embrace manpower training and development in order to improve employees’ performance leading to organizational profitability.

Keywords: training, employee performance, small scale enterprise, organizational profitability

Procedia PDF Downloads 386
21548 Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey

Authors: Umit Duru

Abstract:

The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin.

Keywords: calibration, GIS, sediment yield, SWAT, validation

Procedia PDF Downloads 283
21547 A Strategic Performance Control System for Municipal Organization

Authors: Emin Gundogar, Aysegul Yilmaz

Abstract:

Strategic performance control is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.

Keywords: management information system, municipal management, performance control

Procedia PDF Downloads 477
21546 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee

Abstract:

Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.

Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander

Procedia PDF Downloads 147
21545 Bioactive Chemical Markers Based Strategy for Quality Control of Herbal Medicines

Authors: Zhenzhong Yang

Abstract:

Herbal medicines are important supplements to chemical drugs and usually consist of a complex mixture of constituents. The current quality control strategy of herbal medicines is mainly based on chemical markers, which largely failed to owe to the markers, not reflecting the herbal medicines’ multiple mechanisms of action. Herein, a bioactive chemical markers based strategy was proposed and applied to the quality assessment and control of herbal medicines. This strategy mainly includes the comprehensive chemical characterization of herbal medicines, bioactive chemical markers identification, and related quantitative analysis methods development. As a proof-of-concept, this strategy was applied to a Panax notoginseng derived herbal medicine. The bioactive chemical markers based strategy offers a rational approach for quality assessment and control of herbal medicines.

Keywords: bioactive chemical markers, herbal medicines, quality assessment, quality control

Procedia PDF Downloads 178
21544 Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based on Multi-Agent System

Authors: Nadheer A. Shalash, Abu Zaharin Bin Ahmad

Abstract:

Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0-25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices.

Keywords: reliability indices, load expectation, reserve margin, daily load, probability, multi-agent system

Procedia PDF Downloads 325
21543 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study

Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu

Abstract:

A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.

Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective

Procedia PDF Downloads 144
21542 Effects of Web-Enabled Sculpture Package on Colleges of Education Students’ Psychomotor Ability in Fine Arts in South-West, Nigeria

Authors: Ibrahim A. Kareem, Sina O. Ayelaagbe

Abstract:

This study investigated the effects of web-enabled Sculpture package on Colleges of Education students’ psychomotor level in Fine Arts in South-west, Nigeria. The objectives of this study were to: (i) determine the effect of web-enabled Sculpture package on Fine Arts Students’ performance; (ii) find out the effect of ability levels on Fine Arts Students’ performance and (iii) ascertain the interaction effect of treatment and ability levels on Fine Arts Students’ performance. The study was quasi-experimental design. A total of 48 Fine Arts Students participated in the study. There were 26 students in experimental and 22 for the control. The respondents were purposively sampled from Adeyemi College of Education, Ondo and Federal College of Education (Special) Oyo. Sculpture Achievement Test, Sculpture Skill Test and Sculpture ‘on the Spot’ Skill Assessment Instrument were validated by experts while Pearson’s Product Moment Correlation (PPMC) statistics was used to analyse the instrument while the remaining two instruments were subjected to Cronbach alpha statistics. Data were analysed using t-test and ANCOVA were used to test the hypotheses at 0.05 level of significance. The findings of the study revealed that: (i) Fine Arts Students’ in the experimental group performed significantly better than the control group; (ii) there was a significant difference among high, medium and low ability levels mean scores of Fine Arts Students’ performance in Colleges of Education; (iii) there was no significant interaction effect of treatment and ability levels on the mean scores of Fine Arts Students’ performance in Colleges of Education and. The study concluded that Fine Arts Students exposed to web-enabled Sculpture package performed better than those taught using the conventional method. Based on the study it was recommended that lecturers in Colleges of Education should endeavour to adapt and utilise web-enabled Sculpture package for teaching sculpture.

Keywords: fine art, psychomotor, sculpture, web-enabled

Procedia PDF Downloads 153
21541 Feasibility of Implementing Zero Energy Buildings in Iran and Examining Its Economic and Technical Aspects

Authors: Maryam Siyami

Abstract:

Zero energy buildings refer to buildings that have zero annual energy consumption and do not produce carbon emissions. In today's world, considering the limited resources of fossil fuels, buildings, industries and other organizations have moved towards using other available energies. The idea and principle of net zero energy consumption has attracted a lot of attention because the use of renewable energy is a means and a solution to eliminate pollutants and greenhouse gases. Due to the increase in the cost of fossil fuels and their destructive effects on the environment and disrupting the ecological balance, today the plans related to zero energy principles have become very practical and have gained particular popularity. In this research, building modeling has been done in the Design Builder software environment. Based on the changes in the required energy throughout the year in different roof thickness conditions, it has been observed that with the increase in roof thickness, the amount of heating energy required has a downward trend, from 6730 kilowatt hours in the roof thickness of 10 cm to 6408 kilowatt hours in the roof thickness condition. 20 cm is reached, which represents a reduction of about 4.7% in energy if the roof thickness is doubled. Also, with the increase in the thickness of the roof throughout the year, the amount of cooling energy required has a gentle downward trend and has reached from 4964 kilowatt hours in the case of a roof thickness of 10 cm to 4859 kilowatt hours in the case of a roof thickness of 20 cm, which is a decrease equal to It displays 2%. It can be seen that the trend of changes in the energy required for cooling and heating is not much affected by the thickness of the roof (with an effect of 98%) and therefore there is no technical and economic recommendation to increase the thickness of the roof in this sector. Finally, based on the changes in the carbon dioxide produced in different states of the roof thickness, it has been observed that with the increase in the roof thickness, energy consumption and consequently the production of carbon dioxide has decreased. By increasing the thickness of the roof from 10 cm to 20 cm, the amount of carbon dioxide produced by heating the building has decreased by 27%. Also, this amount of reduction has been obtained based on the cooling system and for different amounts of roof thickness equal to 19%.

Keywords: energy consumption, green building, design builder, AHP

Procedia PDF Downloads 25
21540 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor

Authors: Sumana Kumar, Abha Misra

Abstract:

Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.

Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam

Procedia PDF Downloads 115
21539 Transition From Economic Growth-Energy Use to Green Growth-Green Energy Towards Environmental Quality: Evidence from Africa Using Econometric Approaches

Authors: Jackson Niyongabo

Abstract:

This study addresses a notable gap in the existing literature on the relationship between energy consumption, economic growth, and CO₂ emissions, particularly within the African context. While numerous studies have explored these dynamics globally and regionally across various development levels, few have delved into the nuances of regions and income levels specific to African countries. Furthermore, the evaluation of the interplay between green growth policies, green energy technologies, and their impact on environmental quality has been underexplored. This research aims to fill these gaps by conducting a comprehensive analysis of the transition from conventional economic growth and energy consumption to a paradigm of green growth coupled with green energy utilization across the African continent from 1980 to 2018. The study is structured into three main parts: an empirical examination of the long-term effects of energy intensity, renewable energy consumption, and economic growth on CO₂ emissions across diverse African regions and income levels; an estimation of the long-term impact of green growth and green energy use on CO₂ emissions for countries implementing green policies within Africa, as well as at regional and global levels; and a comparative analysis of the impact of green growth policies on environmental degradation before and after implementation. Employing advanced econometric methods and panel estimators, the study utilizes a testing framework, panel unit tests, and various estimators to derive meaningful insights. The anticipated results and conclusions will be elucidated through causality tests, impulse response, and variance decomposition analyses, contributing valuable knowledge to the discourse on sustainable development in the African context.

Keywords: economic growth, green growth, energy consumption, CO₂ emissions, econometric models, green energy

Procedia PDF Downloads 58
21538 Checking Energy Efficiency by Simulation Tools: The Case of Algerian Ksourian Models

Authors: Khadidja Rahmani, Nahla Bouaziz

Abstract:

Algeria is known for its rich heritage. It owns an immense historical heritage with a universal reputation. Unfortunately, this wealth is withered because of abundance. This research focuses on the Ksourian model, which constitutes a large portion of this wealth. In fact, the Ksourian model is not just a witness to a great part of history or a vernacular culture, but also it includes a panoply of assets in terms of energetic efficiency. In this context, the purpose of our work is to evaluate the performance of the old techniques which are derived from the Ksourian model , and that using the simulation tools. The proposed method is decomposed in two steps; the first consists of isolate and reintroduce each device into a basic model, then run a simulation series on acquired models. And this in order to test the contribution of each of these dialectal processes. In another scale of development, the second step consists of aggregating all these processes in an aboriginal model, then we restart the simulation, to see what it will give this mosaic on the environmental and energetic plan .The model chosen for this study is one of the ksar units of Knadsa city of Bechar (Algeria). This study does not only show the ingenuity of our ancestors in their know-how, and their adapting power to the aridity of the climate, but also proves that their conceptions subscribe in the current concerns of energy efficiency, and respond to the requirements of sustainable development.

Keywords: dialectal processes, energy efficiency, evaluation, Ksourian model, simulation tools

Procedia PDF Downloads 195
21537 Investigating Best Strategies Towards Creating Alternative Assessment in Literature

Authors: Sandhya Rao Mehta

Abstract:

As ChatGpt and other Artificial Intelligence (AI) forms are becoming part of our regular academic world, the consequences are being gradually discussed. The extent to which an essay written by a student is itself of any value if it has been downloaded by some form of AI is perhaps central to this discourse. A larger question is whether writing should be taught as an academic skill at all. In literature classrooms, this has major consequences as writing a traditional paper is still the single most preferred form of assessment. This study suggests that it is imperative to investigate alternative forms of assessment in literature, not only because the existing forms can be written by AI, but in a larger sense, students are increasingly skeptical of the purpose of such work. The extent to which an essay actually helps the students professionally is a question that academia has not yet answered. This paper suggests that using real-world tasks like creating podcasts, video tutorials, and websites is a far better way to evaluate students' critical thinking and application of ideas, as well as to develop digital skills which are important to their future careers. Using the example of a course in literature, this study will examine the possibilities and challenges of creating digital projects as a way of confronting the complexities of student evaluation in the future. The study is based on a specific university English as a Foreign Language (EFL) context.

Keywords: assessment, literature, digital humanities, chatgpt

Procedia PDF Downloads 86
21536 Developing a HSE-Finacial Indicator Model in Oil Industry

Authors: Reza Safari, Ali Rajabzadeh Ghatari, Raheleh Hossseinzadeh Mahabadi

Abstract:

In the present world, there are different pressures on firms such as competition, legislations, social etc. these pressures force the firms to follow “survival” as their primary goal and then growth. One of the main factors that helps firms to reach their goals is proper financial performance. To find out about the financial performance, a firm should monitors its financial performance. Financial performance affected by many factors. This research seeks to clear which financial performance indicators are most important according to Environmental situation of a firm and what are their priorities. To do so, environmental indicators specified as presented on OECD Key Environmental Indicators 2008 and so the financial performance indicators such as Profitability, Liquidity, Gearing, Investor ratios, and etc. At this stage, the affections questioned through questionnaires. After gaining the results, data analyzed using Promethee technique. By using decision matrixes extracted from those techniques an expert system designed. This expert system suggests the suitable financial performance indicators and their ranking by receiving the environment situation given environment indicators weight.

Keywords: environment indicators, financial performance indicators, promethee, expert system

Procedia PDF Downloads 442
21535 Techno-Economic Assessments of Promising Chemicals from a Sugar Mill Based Biorefinery

Authors: Kathleen Frances Haigh, Mieke Nieder-Heitmann, Somayeh Farzad, Mohsen Ali Mandegari, Johann Ferdinand Gorgens

Abstract:

Lignocellulose can be converted to a range of biochemicals and biofuels. Where this is derived from agricultural waste, issues of competition with food are virtually eliminated. One such source of lignocellulose is the South African sugar industry. Lignocellulose could be accessed by changes to the current farming practices and investments in more efficient boilers. The South African sugar industry is struggling due to falling sugar prices and increasing costs and it is proposed that annexing a biorefinery to a sugar mill will broaden the product range and improve viability. Process simulations of the selected chemicals were generated using Aspen Plus®. It was envisaged that a biorefinery would be annexed to a typical South African sugar mill. Bagasse would be diverted from the existing boilers to the biorefinery and mixed with harvest residues. This biomass would provide the feedstock for the biorefinery and the process energy for the biorefinery and sugar mill. Thus, in all scenarios a portion of the biomass was diverted to a new efficient combined heat and power plant (CHP). The Aspen Plus® simulations provided the mass and energy balance data to carry out an economic assessment of each scenarios. The net present value (NPV), internal rate of return (IRR) and minimum selling price (MSP) was calculated for each scenario. As a starting point scenarios were generated to investigate the production of ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol, and Fischer-Tropsch syncrude. The bypass to the CHP plant is a useful indicator of the energy demands of the chemical processes. An iterative approach was used to identify a suitable bypass because increasing this value had the combined effect of increasing the amount of energy available and reducing the capacity of the chemical plant. Bypass values ranged from 30% for syncrude production to 50% for combined ethanol and furfural production. A hurdle rate of 15.7% was selected for the IRR. The butanol, combined ethanol and furfural, or the Fischer-Tropsch syncrude scenarios are unsuitable for investment with IRRs of 4.8%, 7.5% and 11.5% respectively. This provides valuable insights into research opportunities. For example furfural from sugarcane bagasse is an established process although the integration of furfural production with ethanol is less well understood. The IRR for the ethanol scenario was 14.7%, which is below the investment criteria, but given the technological maturity it may still be considered for investment. The scenarios which met the investment criteria were the combined ethanol and lactic acid, and the methanol scenarios with IRRs of 20.5% and 16.7%, respectively. These assessments show that the production of biochemicals from lignocellulose can be commercially viable. In addition, this assessment have provided valuable insights for research to improve the commercial viability of additional chemicals and scenarios. This has led to further assessments of the production of itaconic acid, succinic acid, citric acid, xylitol, polyhydroxybutyrate, polyethylene, glucaric acid and glutamic acid.

Keywords: biorefineries, sugar mill, methanol, ethanol

Procedia PDF Downloads 197