Search results for: Vector Error Correction Model (VECM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18858

Search results for: Vector Error Correction Model (VECM)

16848 Photoelastic Analysis of the Proximal Femur in Deviations of the Mechanical Axis of the Lower Limb

Authors: S. F. Fakhouri, M.M. Shimano, D. Maranho, C. A. Araújo, M. V. Guimarães, A. C. Shimano, J. B. Volpon

Abstract:

Pathological deviations of the mechanical axis of the lower limbs deeply alter the stress distributions on the femur and tibia and the hip, knee, and ankle articulations. The purpose of this research was to assess the effects of pathological deviations in different levels of the lower limbs in the distribution of stress in the proximal femur region using photoelasticity of plane transmission. For most of the types of deviations studied, the results showed that the internal stress was generally higher in the calcar region than in the trochanteric region, followed by the third distal of the femur head. This study allowed for the development of better criteria for the correction of angular deviations and helped identify the deviations that are most harmful to the mechanical axis in terms of the effects on the bone and the articular effort of the lower limbs. These results will lead to future improvements in studies on prostheses.

Keywords: alignment, deviations, inferior limbs, mechanical axis, photoelasticity, stress

Procedia PDF Downloads 386
16847 Valuation of Caps and Floors in a LIBOR Market Model with Markov Jump Risks

Authors: Shih-Kuei Lin

Abstract:

The characterization of the arbitrage-free dynamics of interest rates is developed in this study under the presence of Markov jump risks, when the term structure of the interest rates is modeled through simple forward rates. We consider Markov jump risks by allowing randomness in jump sizes, independence between jump sizes and jump times. The Markov jump diffusion model is used to capture empirical phenomena and to accurately describe interest jump risks in a financial market. We derive the arbitrage-free model of simple forward rates under the spot measure. Moreover, the analytical pricing formulas for a cap and a floor are derived under the forward measure when the jump size follows a lognormal distribution. In our empirical analysis, we find that the LIBOR market model with Markov jump risk better accounts for changes from/to different states and different rates.

Keywords: arbitrage-free, cap and floor, Markov jump diffusion model, simple forward rate model, volatility smile, EM algorithm

Procedia PDF Downloads 422
16846 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models

Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi

Abstract:

In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.

Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function

Procedia PDF Downloads 570
16845 The Impact of Geopolitical Risks and the Oil Price Fluctuations on the Kuwaiti Financial Market

Authors: Layal Mansour

Abstract:

The aim of this paper is to identify whether oil price volatility or geopolitical risks can predict future financial stress periods or economic recessions in Kuwait. We construct the first Financial Stress Index for Kuwait (FSIK) that includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. The study covers the period from 2000 to 2020, so it includes the two recent most devastating world economic crises with oil price fluctuation: the Covid-19 pandemic crisis and Ukraine-Russia War. All data are taken by the central bank of Kuwait, the World Bank, IMF, DataStream, and from Federal Reserve System St Louis. The variables are computed as the percentage growth rate, then standardized and aggregated into one index using the variance equal weights method, the most frequently used in the literature. The graphical FSIK analysis provides detailed information (by dates) to policymakers on how internal financial stability depends on internal policy and events such as government elections or resignation. It also shows how monetary authorities or internal policymakers’ decisions to relieve personal loans or increase/decrease the public budget trigger internal financial instability. The empirical analysis under vector autoregression (VAR) models shows the dynamic causal relationship between the oil price fluctuation and the Kuwaiti economy, which relies heavily on the oil price. Similarly, using vector autoregression (VAR) models to assess the impact of the global geopolitical risks on Kuwaiti financial stability, results reveal whether Kuwait is confronted with or sheltered from geopolitical risks. The Financial Stress Index serves as a guide for macroprudential regulators in order to understand the weakness of the overall Kuwaiti financial market and economy regardless of the Kuwaiti dinar strength and exchange rate stability. It helps policymakers predict future stress periods and, thus, address alternative cushions to confront future possible financial threats.

Keywords: Kuwait, financial stress index, causality test, VAR, oil price, geopolitical risks

Procedia PDF Downloads 84
16844 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software

Procedia PDF Downloads 331
16843 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 244
16842 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 97
16841 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach

Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic

Abstract:

The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.

Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning

Procedia PDF Downloads 186
16840 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica

Authors: J. Adeppa, S. Samanta, O. K. Raina

Abstract:

Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.

Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR

Procedia PDF Downloads 188
16839 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 263
16838 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience

Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri

Abstract:

Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on a review of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.

Keywords: infectious diseases dissemination, public health, urbanization impacts, urban resilience

Procedia PDF Downloads 78
16837 Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution

Procedia PDF Downloads 154
16836 Predicting Recessions with Bivariate Dynamic Probit Model: The Czech and German Case

Authors: Lukas Reznak, Maria Reznakova

Abstract:

Recession of an economy has a profound negative effect on all involved stakeholders. It follows that timely prediction of recessions has been of utmost interest both in the theoretical research and in practical macroeconomic modelling. Current mainstream of recession prediction is based on standard OLS models of continuous GDP using macroeconomic data. This approach is not suitable for two reasons: the standard continuous models are proving to be obsolete and the macroeconomic data are unreliable, often revised many years retroactively. The aim of the paper is to explore a different branch of recession forecasting research theory and verify the findings on real data of the Czech Republic and Germany. In the paper, the authors present a family of discrete choice probit models with parameters estimated by the method of maximum likelihood. In the basic form, the probits model a univariate series of recessions and expansions in the economic cycle for a given country. The majority of the paper deals with more complex model structures, namely dynamic and bivariate extensions. The dynamic structure models the autoregressive nature of recessions, taking into consideration previous economic activity to predict the development in subsequent periods. Bivariate extensions utilize information from a foreign economy by incorporating correlation of error terms and thus modelling the dependencies of the two countries. Bivariate models predict a bivariate time series of economic states in both economies and thus enhance the predictive performance. A vital enabler of timely and successful recession forecasting are reliable and readily available data. Leading indicators, namely the yield curve and the stock market indices, represent an ideal data base, as the pieces of information is available in advance and do not undergo any retroactive revisions. As importantly, the combination of yield curve and stock market indices reflect a range of macroeconomic and financial market investors’ trends which influence the economic cycle. These theoretical approaches are applied on real data of Czech Republic and Germany. Two models for each country were identified – each for in-sample and out-of-sample predictive purposes. All four followed a bivariate structure, while three contained a dynamic component.

Keywords: bivariate probit, leading indicators, recession forecasting, Czech Republic, Germany

Procedia PDF Downloads 249
16835 A Basic Metric Model: Foundation for an Evidence-Based HRM System

Authors: K. M. Anusha, R. Krishnaveni

Abstract:

Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.

Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector

Procedia PDF Downloads 404
16834 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection

Authors: Nikolaos Reppas, Yilin Gui

Abstract:

A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.

Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model

Procedia PDF Downloads 176
16833 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique

Authors: N. Guo, C. Xu, Z. C. Yang

Abstract:

In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.

Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search

Procedia PDF Downloads 161
16832 Calendar Anomalies in Islamic Frontier Markets

Authors: Aslam Faheem, Hunjra Ahmed Imran, Tayachi Tahar, Verhoeven Peter, Tariq Yasir

Abstract:

We investigate the evidence of three risk-adjusted calendar anomalies in eight frontier markets. Our sample consists of the daily closing prices of their stock indices for the period of January 2006 to September 2019. We categorize the data with respect to day-of-the-week, Lunar calendar and Islamic calendar. Using Morgan Stanley Capital International (MSCI) eight Markets Index as our proxy of the market portfolio, most of the frontier markets tested exhibit calendar seasonality. We confirm that systematic risk varies with respect to day-of-the-week, Lunar months and Islamic months. After consideration of time-varying risk and applying Bonferroni correction, few frontier markets exhibit profitable investment opportunities from calendar return anomalies for active investment managers.

Keywords: asset pricing, frontier markets, market efficiency, Islamic calendar effects, Islamic stock markets

Procedia PDF Downloads 168
16831 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning

Authors: Hong Zhang

Abstract:

The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.

Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning

Procedia PDF Downloads 144
16830 New Dynamic Constitutive Model for OFHC Copper Film

Authors: Jin Sung Kim, Hoon Huh

Abstract:

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

Keywords: rate dependent material properties, dynamic constitutive model, OFHC copper film, strain rate

Procedia PDF Downloads 487
16829 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 173
16828 Improving the Quantification Model of Internal Control Impact on Banking Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.

Keywords: risk, control, banking, FMECA, criticality

Procedia PDF Downloads 335
16827 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose

Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani

Abstract:

Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.

Keywords: Gliclazide, hypromellose, drug release, modified-release tablet, mathematical model

Procedia PDF Downloads 224
16826 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption

Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett

Abstract:

Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.

Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera

Procedia PDF Downloads 149
16825 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory

Procedia PDF Downloads 384
16824 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: carbon fiber reinforced thermoplastic, finite element analysis, pre-impregnated textile composite, non-isothermal forming

Procedia PDF Downloads 430
16823 Review of Different Machine Learning Algorithms

Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui

Abstract:

Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.

Keywords: Data Mining, Web Mining, classification, ML Algorithms

Procedia PDF Downloads 303
16822 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 94
16821 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
16820 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model

Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi

Abstract:

The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.

Keywords: Besag2, CAR models, disease mapping, INLA, spatial models

Procedia PDF Downloads 282
16819 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient

Procedia PDF Downloads 392