Search results for: cycle stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5243

Search results for: cycle stability

3263 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 256
3262 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture

Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger

Abstract:

3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.

Keywords: 3D woven composites, compression, preforms, textile composites

Procedia PDF Downloads 128
3261 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage

Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing

Abstract:

The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.

Keywords: lunar samples, gas disturbance, storage device, characteristic analysis

Procedia PDF Downloads 283
3260 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 192
3259 Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting

Authors: Armin Rahmatfam, Mohammad Zehsaz, Farid Vakili Tahami, Nasser Ghassembaglou

Abstract:

In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented.

Keywords: combined hardening model, kinematic hardening, isotropic hardening, cyclic tests

Procedia PDF Downloads 465
3258 Conceptualization of Value Co-Creation for Shrimp Products in Bangladesh

Authors: Subarna Ferdous, Mitsuru Ikeda

Abstract:

For the shrimp companies to remain relevant to its local and international consumers, they must offer new shrimp product and services. It must work actively not just to create value for the consumer, but to involve the consumer in co-creating value for shrimp product innovation in the market. In this theoretical work, we conceptualize the business concept of value co-creation in the context of shrimp products, and propose a framework of value co-creation for shrimp product innovation in shrimp industries. With guidance on value co-creation in in shrimp industry, and shrimp value chain actors mapped to the co-creation cycle, companies can use the framework to offer new shrimp product to consumer communities. Although customer co-creation is known approach in the world, it is not commonly used by the companies in Bangladesh. This paper makes an original contribution by conceptualizing co-creation and set the examples of best co-creation practices in food sector. The results of the study provide management with guidelines for successful co-creation projects with an innovation- and market-oriented approach. The framework also provides a basis for further research in this area.

Keywords: bangladesh, shrimp industry, value co-creation, shrimp product

Procedia PDF Downloads 504
3257 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis

Authors: Karima Megdouli, Bourhan tachtouch

Abstract:

Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.

Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis

Procedia PDF Downloads 80
3256 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 406
3255 Implementation of 5S Lean Methodology in Reviewing Competencies in a Higher Education Institution

Authors: Jasim Saleh Said AlDairi

Abstract:

The potential of applying Lean Management in Higher Education Institutions has increased significantly in last few years, leading to tremendous savings. Reviewing and updating competencies’ curriculum matrix is one of the critical and complicated processes that consume time and effort, and this has triggered searching for a scientific and sustainable approach to manage the such review. This paper presents a novel approach of implementing Lean (5S) methodology in reviewing technical competencies required for the graduates of the Military Technological College (MTC) in the Sultanate of Oman. The 5S framework has been imbedded into an action plan using the PDCA cycle. As a result, the method applied has helped in sorting out the actual required competencies, the team has identified the required (new, amended, and deleted) competencies in all of the targeted Engineering Departments, in addition, the major wastes within the overall process were identified, and the future review process was standardized and documented.

Keywords: PDCA, 5S, lean, MTC, competencies, curriculum matrix, higher education

Procedia PDF Downloads 80
3254 Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges

Authors: Jae-Joon Song, Sang-Yoon Lee, Bong-Chul Joo

Abstract:

The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. In this study, the link slab with transition zone was used for the continuity of the precast modular bridges, and the construction detail of link slab was modified. In addition, the modified iterative design method of link slab was proposed in this study. To verify the proposed design method, the fatigue test using the mock-up specimen was conducted with cycle loading condition up to two million cycles.

Keywords: precast, modular bridge, link slab

Procedia PDF Downloads 429
3253 Effects of the Treatment by Polypill Combinations vs Identical Monopill Therapies in Patients with Cardiovascular Comorbid Diseases

Authors: Denys Sebov, Viktoriia Korotaieva, Kateryna Markina

Abstract:

The clinical advantage of the multipill combination drugs administration (polypill-strategy) over single-component drugs (monopill-strategy) has been established in patients with comorbid arterial hypertension, heart failure, chronic coronary syndrome, diabetes. It was found that polypill-strategy provides better treatment adherence in 33.4% of the patients. It was proven a significant decrease in systolic and diastolic blood pressure, as well as a decrease in dispersion index due to the stability of the blood pressure profile in patients with the polypill-strategy treatment.

Keywords: polypill, artetial hypertension, cardiovascular disease, compliance

Procedia PDF Downloads 51
3252 Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus

Authors: Aasaithambi Kalaiselvi, Michael Gabriel Paulraj, Ekambaram Nakkeeran

Abstract:

Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest.

Keywords: Cinnamomum verum, niosomes, entrapment efficiency, bactericidal and fungicidal, mosquito larvicidal activity

Procedia PDF Downloads 156
3251 Survey to Assess the Feasibility of Executing the Web-Based Collaboration Process Using WBCS

Authors: Mohamed A. Sullabi

Abstract:

The importance of the formal specification in the software life cycle is barely concealing to anyone. Formal specifications use mathematical notation to describe the properties of information system precisely, without unduly constraining the way in how these properties are achieved. Having a correct and quality software specification is not easy task. This study concerns with how a group of rectifiers can communicate with each other and work to prepare and produce a correct formal software specification. WBCS has been implemented based mainly in the proposed supported cooperative work model and a survey conducted on the existing Webbased collaborative writing tools. This paper aims to assess the feasibility of executing the web-based collaboration process using WBCS. The purpose of conducting this test is to test the system as a whole for functionality and fitness for use based on the evaluation test plan.

Keywords: formal methods, formal specifications, collaborative writing, usability testing

Procedia PDF Downloads 386
3250 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 204
3249 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells

Procedia PDF Downloads 583
3248 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 249
3247 Long-Term Tillage, Lime Matter and Cover Crop Effects under Heavy Soil Conditions in Northern Lithuania

Authors: Aleksandras Velykis, Antanas Satkus

Abstract:

Clay loam and clay soils are typical for northern Lithuania. These soils are susceptible to physical degradation in the case of intensive use of heavy machinery for field operations. However, clayey soils having poor physical properties by origin require more intensive tillage to maintain proper physical condition for grown crops. Therefore not only choice of suitable tillage system is very important for these soils in the region, but also additional search of other measures is essential for good soil physical state maintenance. Research objective: To evaluate the long-term effects of different intensity tillage as well as its combinations with supplementary agronomic practices on improvement of soil physical conditions and environmental sustainability. The experiment examined the influence of deep and shallow ploughing, ploughless tillage, combinations of ploughless tillage with incorporation of lime sludge and cover crop for green manure and application of the same cover crop for mulch without autumn tillage under spring and winter crop growing conditions on clay loam (27% clay, 50% silt, 23% sand) Endocalcaric Endogleyic Cambisol. Methods: The indicators characterizing the impact of investigated measures were determined using the following methods and devices: Soil dry bulk density – by Eijkelkamp cylinder (100 cm3), soil water content – by weighing, soil structure – by Retsch sieve shaker, aggregate stability – by Eijkelkamp wet sieving apparatus, soil mineral nitrogen – in 1 N KCL extract using colorimetric method. Results: Clay loam soil physical state (dry bulk density, structure, aggregate stability, water content) depends on tillage system and its combination with additional practices used. Application of cover crop winter mulch without tillage in autumn, ploughless tillage and shallow ploughing causes the compaction of bottom (15-25 cm) topsoil layer. However, due to ploughless tillage the soil dry bulk density in subsoil (25-35 cm) layer is less compared to deep ploughing. Soil structure in the upper (0-15 cm) topsoil layer and in the seedbed (0-5 cm), prepared for spring crops is usually worse when applying the ploughless tillage or cover crop mulch without autumn tillage. Application of lime sludge under ploughless tillage conditions helped to avoid the compaction and structure worsening in upper topsoil layer, as well as increase aggregate stability. Application of reduced tillage increased soil water content at upper topsoil layer directly after spring crop sowing. However, due to reduced tillage the water content in all topsoil markedly decreased when droughty periods lasted for a long time. Combination of reduced tillage with cover crop for green manure and winter mulch is significant for preserving the environment. Such application of cover crops reduces the leaching of mineral nitrogen into the deeper soil layers and environmental pollution. This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: clay loam, endocalcaric endogleyic cambisol, mineral nitrogen, physical state

Procedia PDF Downloads 220
3246 Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capability

Procedia PDF Downloads 320
3245 Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude

Authors: Prince Vivek, Vijay K. Bharti, Manishi Mukesh, Ankita Sharma, Om Prakash Chaurasia, Bhuvnesh Kumar

Abstract:

High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying.

Keywords: endurance exercise, ubiquitin B (UBB), β₂ microglobulin (β₂M), high altitude, Zanskar ponies, reference gene

Procedia PDF Downloads 126
3244 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

Authors: Imane Khalil, Quinn Pratt

Abstract:

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification

Procedia PDF Downloads 206
3243 Cycle Number Estimation Method on Fatigue Crack Initiation Using Voronoi Tessellation and the Tanaka Mura Model

Authors: Mohammad Ridzwan Bin Abd Rahim, Siegfried Schmauder, Yupiter HP Manurung, Peter Binkele, Meor Iqram B. Meor Ahmad, Kiarash Dogahe

Abstract:

This paper deals with the short crack initiation of the material P91 under cyclic loading at two different temperatures, concluded with the estimation of the short crack initiation Wöhler (S/N) curve. An artificial but representative model microstructure was generated using Voronoi tessellation and the Finite Element Method, and the non-uniform stress distribution was calculated accordingly afterward. The number of cycles needed for crack initiation is estimated on the basis of the stress distribution in the model by applying the physically-based Tanaka-Mura model. Initial results show that the number of cycles to generate crack initiation is strongly correlated with temperature.

Keywords: short crack initiation, P91, Wöhler curve, Voronoi tessellation, Tanaka-Mura model

Procedia PDF Downloads 94
3242 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

Authors: Thee Chowwanonthapunya, Junhua Dong, Wei Ke

Abstract:

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurements were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25 oC and 60 % RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.

Keywords: atmospheric corrosion, EIS, low alloy, rust

Procedia PDF Downloads 438
3241 A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad

Authors: Ashwini Umale

Abstract:

Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time.

Keywords: trajectory optimization, forward kinematics and reverse kinematics, dynamic constraints, robcad simulation software

Procedia PDF Downloads 495
3240 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 104
3239 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing

Authors: Andrew Hall, Paul Clarkson

Abstract:

Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.

Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change

Procedia PDF Downloads 190
3238 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery as bearing is important in order to improve its stability of works. Acoustic emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that the success of vibration analysis does not take place below 100 rpm rotational speed. This because the energy generated below 100 rpm rotational speed is not detectable using conventional vibration. From this pint, this paper has presented a focused review of using acoustic emission techniques for monitoring bearings condition.

Keywords: condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis

Procedia PDF Downloads 306
3237 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 141
3236 The Challenges of Implementing Building Information Modeling in Small-Medium Enterprises Architecture Firms in Indonesia

Authors: Furry A. Wilis, Dewi Larasati, Suhendri

Abstract:

Around 96% of architecture firms in Indonesia are classified as small-medium enterprises (SME). This number shows that the SME firms have an important role in architecture, engineering, and construction (AEC) industry in Indonesia. Some of them are still using conventional system (2D based) in arranging construction project documents. This system is fragmented and not fully well-coordinated, so causes many changes in the whole project cycle. Building information modeling (BIM), as a new developed system in Indonesian construction industry, has been assumed can decrease changes in the project. But BIM has not fully implemented in Indonesian AEC industry, especially in SME architecture firms. This article identifies the challenges of implementing BIM in SME architecture firms in Indonesia. Quantitative-explorative research with questionnaire was chosen to achieve the goal of this article. The scarcity of skilled BIM user, low demand from client, high investment cost, and the unwillingness of the firm to switch into BIM were found as the result of this paper.

Keywords: architecture consultants, BIM, SME, Indonesia

Procedia PDF Downloads 330
3235 Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India

Authors: Sachin Kamble, Shradha Gawankar

Abstract:

This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%.

Keywords: in-plant logistics, cement logistics, simulation modelling, business process re-engineering, supply chain management

Procedia PDF Downloads 289
3234 Performance Analysis of the First-Order Characteristics of Polling System Based on Parallel Limited (K=1) Services Mode

Authors: Liu Yi, Bao Liyong

Abstract:

Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment.

Keywords: polling, parallel scheduling, mean queue length, average cycle time

Procedia PDF Downloads 30