Search results for: artificial microRNA approach
13543 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation
Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian
Abstract:
Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.Keywords: optical flow, variational methods, computer vision, anisotropic operator
Procedia PDF Downloads 87313542 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages
Authors: Kawalpreet Kaur, Panagiotis Mitropoulos
Abstract:
The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.Keywords: work structuring, bid packages, work breakdown, project participants
Procedia PDF Downloads 7913541 A System Dynamics Approach to Exploring Personality Traits in Young Children
Authors: Misagh Faezipour
Abstract:
System dynamics is a systems engineering approach that can help address the complex challenges in different systems. Little is known about how the brain represents people to predict behavior. This work is based on how the brain simulates different personal behavior and responds to them in the case of young children ages one to five. As we know, children’s minds/brains are just as clean as a crystal, and throughout time, in their surroundings, families, and education center, they grow to develop and have different kinds of behavior towards the world and the society they live in. Hence, this work aims to identify how young children respond to various personality behavior and observes their reactions towards them from a system dynamics perspective. We will be exploring the Big Five personality traits in young children. A causal model is developed in support of the system dynamics approach. These models graphically present the factors and factor relationships that contribute to the big five personality traits and provide a better understanding of the entire behavior model. A simulator will be developed that includes a set of causal model factors and factor relationships. The simulator models the behavior of different factors related to personality traits and their impacts and can help make more informed decisions in a risk-free environment.Keywords: personality traits, systems engineering, system dynamics, causal model, behavior model
Procedia PDF Downloads 9613540 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms
Authors: A. Majidian
Abstract:
The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.Keywords: life prediction, condenser tube, neural network, fuzzy logic
Procedia PDF Downloads 35113539 Mapping the Future: Participatory Master Planning for Pioneer Village Tourism in Cibubuan, Sumedang
Authors: Sarojini Imran, Riza Firmansyah, Aula Ramadhan, Chudamul Furqon, Achfriyatama Oktariflandi
Abstract:
This article delves into the participatory approach in formulating a master plan for the development of pioneer village tourism in Cibubuan, Sumedang. We explore the process of participatory mapping that involves the active participation of the local community in planning and envisioning the future of village tourism. This research considers the positive impact that arises when the community takes an active role in designing a master plan that benefits the local economy while preserving culture and the environment. The results of this research reveal that the participatory approach can create a more accurate and community-responsive mapping that aligns with the aspirations of the people in Cibubuan Village. It also provides a deep insight into how community-developed mapping can guide the development of sustainable tourism. By offering a deeper understanding of the participatory role in village tourism development planning, this article provides essential insights for stakeholders and researchers in this field. We hope this article will inspire more communities to adopt a participatory approach in planning the future of their village tourism.Keywords: participatory masterplan, pioneer village tourism, sustainable tourism, community engagement, Cibubuan Village
Procedia PDF Downloads 6813538 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21313537 Forecasting Solid Waste Generation in Turkey
Authors: Yeliz Ekinci, Melis Koyuncu
Abstract:
Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.Keywords: forecast, solid waste generation, solid waste management, Turkey
Procedia PDF Downloads 50713536 Cryptographic Protocol for Secure Cloud Storage
Authors: Luvisa Kusuma, Panji Yudha Prakasa
Abstract:
Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.Keywords: cloud storage, security, cryptographic protocol, artificial intelligence
Procedia PDF Downloads 35713535 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 16213534 Assessment of ATC with Shunt FACTS Devices
Authors: Ashwani Kumar, Jitender Kumar
Abstract:
In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.Keywords: available transfer capability, FACTS devices, line contingency, multi-transactions, ZIP load model
Procedia PDF Downloads 60113533 Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety
Authors: Michael Heuer, Ayoub Al-Hamadi, Alexander Rain, Marc-Michael Meinecke
Abstract:
Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series.Keywords: radar, pedestrian detection, active safety, sensor
Procedia PDF Downloads 52913532 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media
Authors: Andrew Kurochkin, Kostiantyn Bokhan
Abstract:
In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction
Procedia PDF Downloads 13813531 Dinitrotoluene and Trinitrotoluene Measuring in Double-Base Solid Propellants
Authors: Z. H. Safari, M. Anbia, G. H. Kouzegari, R. Amirkhani
Abstract:
Toluene and Nitro derivatives are widely used in industry particularly in various defense applications. Tri-nitro-toluene derivative is a powerful basic explosive material that is a basis upon which to compare equivalent explosive power of similar materials. The aim of this paper is to measure the explosive power of these hazardous substances in fuels having different shelf-life and therefore optimizing their storage and maintenance. The methodology involves measuring the amounts of di- nitro- toluene and tri-nitro-toluene in the aged samples at 90 ° C by gas chromatography. Results show no significant difference in the concentration of the TNT compound over a given time while there was a significant difference in DNT compound over the same period. The underlying reason is attributed to the simultaneous production of the material with destruction of stabilizer.Keywords: dinitrotoluene, trinitrotoluene, double-base solid propellants, artificial aging
Procedia PDF Downloads 40313530 Promoting Gender Equality within Islamic Tradition via Contextualist Approach
Authors: Ali Akbar
Abstract:
The importance of advancing women’s rights is closely intertwined with the development of civil society and the institutionalization of democracy in Middle Eastern countries. There is indeed an intimate relationship between the process of democratization and promoting gender equality, since democracy necessitates equality between men and women. In order to advance the issue of gender equality, what is required is a solid theoretical framework which has its roots in the reexamination of pre-modern interpretation of certain Qurʾānic passages that seem to have given men more rights than it gives women. This paper suggests that those Muslim scholars who adopt a contextualist approach to the Qurʾānic text and its interpretation provide a solid theoretical background for improving women’s rights. Indeed, the aim of the paper is to discuss how the contextualist approach to the Qurʾānic text and its interpretation given by a number of prominent scholars is capable of promoting the issue of gender equality. The paper concludes that since (1) much of the gender inequality found in the primary sources of Islam as well as pre-modern Muslim writings is rooted in the natural cultural norms and standards of early Islamic societies and (2) since the context of today’s world is so different from that of the pre-modern era, the proposed models provide a solid theoretical framework for promoting women’s rights and gender equality.Keywords: contextualism, gender equality, Islam, the rights of women
Procedia PDF Downloads 32513529 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems
Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral
Abstract:
This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation
Procedia PDF Downloads 34913528 Enhancing AI for Global Impact: Conversations on Improvement and Societal Benefits
Authors: C. P. Chukwuka, E. V. Chukwuka, F. Ukwadi
Abstract:
This paper focuses on the advancement and societal impact of artificial intelligence (AI) systems. It explores the need for a theoretical framework in corporate governance, specifically in the context of 'hybrid' companies that have a mix of private and government ownership. The paper emphasizes the potential of AI to address challenges faced by these companies and highlights the importance of the less-explored state model in corporate governance. The aim of this research is to enhance AI systems for global impact and positive societal outcomes. It aims to explore the role of AI in refining corporate governance in hybrid companies and uncover nuanced insights into complex ownership structures. The methodology involves leveraging the capabilities of AI to address the challenges faced by hybrid companies in corporate governance. The researchers will analyze existing theoretical frameworks in corporate governance and integrate AI systems to improve problem-solving and understanding of intricate systems. The paper suggests that improved AI systems have the potential to shape a more informed and responsible corporate landscape. AI can uncover nuanced insights and navigate complex ownership structures in hybrid companies, leading to greater efficacy and positive societal outcomes. The theoretical importance of this research lies in the exploration of the role of AI in corporate governance, particularly in the context of hybrid companies. By integrating AI systems, the paper highlights the potential for improved problem-solving and understanding of intricate systems, contributing to a more informed and responsible corporate landscape. The data for this research will be collected from existing literature on corporate governance, specifically focusing on hybrid companies. Additionally, data on AI capabilities and their application in corporate governance will be collected. The collected data will be analyzed through a systematic review of existing theoretical frameworks in corporate governance. The researchers will also analyze the capabilities of AI systems and their potential application in addressing the challenges faced by hybrid companies. The findings will be synthesized and compared to identify patterns and potential improvements. The research concludes that AI systems have the potential to enhance corporate governance in hybrid companies, leading to greater efficacy and positive societal outcomes. By leveraging AI capabilities, nuanced insights can be uncovered, and complex ownership structures can be navigated, shaping a more informed and responsible corporate landscape. The findings highlight the importance of integrating AI in refining problem-solving and understanding intricate systems for global impact.Keywords: advancement, artificial intelligence, challenges, societal impact
Procedia PDF Downloads 5613527 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm
Authors: Hooman Torabifard
Abstract:
In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.Keywords: image summarization, particle swarm optimization, image threshold, image processing
Procedia PDF Downloads 13313526 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12213525 Human Rights Violation in Modern Society
Authors: Shenouda Salib Hosni Rofail
Abstract:
The interface between development and human rights has long been the subject of scholarly debate. As a result, a set of principles ranging from the right to development to a human rights-based approach to development has been adopted to understand the dynamics between the two concepts. Despite these attempts, the exact link between development and human rights is not yet fully understood. However, the inevitable interdependence between the two concepts and the idea that development efforts must be made while respecting human rights have gained prominence in recent years. On the other hand, the emergence of sustainable development as a widely accepted approach to development goals and policies further complicates this unresolved convergence. The place of sustainable development in the human rights discourse and its role in ensuring the sustainability of development programs require systematic research. The aim of this article is, therefore, to examine the relationship between development and human rights, with a particular focus on the place of the principles of sustainable development in international human rights law. It will continue to examine whether it recognizes the right to sustainable development. Thus, the Article states that the principles of sustainable development are recognized directly or implicitly in various human rights instruments, which is an affirmative answer to the question posed above. Accordingly, this document scrutinizes international and regional human rights instruments, as well as the case law and interpretations of human rights bodies, to support this hypothesis.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.
Procedia PDF Downloads 5013524 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide
Authors: Gu Zhonghua
Abstract:
Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.Keywords: waveguide, etch, control, silicon loss
Procedia PDF Downloads 41413523 Improving Public Sectors’ Policy Direction on Large Infrastructure Investment Projects: A Developmental Approach
Authors: Ncedo Cameron Xhala
Abstract:
Several public sector institutions lack policy direction on how to successfully implement their large infrastructure investment projects. It is significant to improve strategic policy direction in public sector institutions in order to improve planning, management and implementation of large infrastructure investment projects. It is significant to improve an understanding of internal and external pressures that exerts pressure on large infrastructure projects. The significance is to fulfill the public sector’s mandate, align the sectors’ scarce resources, stakeholders and to improve project management processes. The study used a case study approach which was underpinned by a constructionist approach. The study used a theoretical sampling technique when selecting study participants, and was followed by a snowball sampling technique that was used to select an identified case study project purposefully. The study was qualitative in nature, collected and analyzed qualitative empirical data from the purposefully selected five subject matter experts and has analyzed the case study documents. The study used a semi-structured interview approach, analysed case study documents in a qualitative approach. The interviews were on a face-to-face basis and were guided by an interview guide with focused questions. The study used a three coding process step comprising of one to three steps when analysing the qualitative empirical data. Findings reveal that an improvement of strategic policy direction in public sector institutions improves the integration in planning, management and on implementation on large infrastructure investment projects. Findings show the importance of understanding the external and internal pressures when implementing public sector’s large infrastructure investment projects. The study concludes that strategic policy direction in public sector institutions results in improvement of planning, financing, delivery, monitoring and evaluation and successful implementation of the public sector’s large infrastructure investment projects.Keywords: implementation, infrastructure, investment, management
Procedia PDF Downloads 15113522 Teaching Research Methods at the Graduate Level Utilizing Flipped Classroom Approach; An Action Research Study
Authors: Munirah Alaboudi
Abstract:
This paper discusses a research project carried out with 12 first-year graduate students enrolled in research methods course prior to undertaking a graduate thesis during the academic year 2019. The research was designed for the objective of creating research methods course structure that embraces an individualized and activity-based approach to learning in a highly engaging group environment. This approach targeted innovating the traditional research methods lecture-based, theoretical format where students reported less engagement and limited learning. This study utilized action research methodology in developing a different approach to research methods course instruction where student performance indicators and feedback were periodically collected to assess the new teaching method. Student learning was achieved through utilizing the flipped classroom approach where students learned the material at home and classroom activities were designed to implement and experiment with the newly acquired information, with the guidance of the course instructor. Student learning in class was practiced through a series of activities based on different research methods. With the goal of encouraging student engagement, a wide range of activities was utilized including workshops, role play, mind-mapping, presentations, peer evaluations. Data was collected through an open-ended qualitative questionnaire to establish whether students were engaged in the material they were learning, and to what degree were they engaged, and to test their mastery level of the concepts discussed. Analysis of the data presented positive results as around 91% of the students reported feeling more engaged with the active learning experience and learning research by “actually doing research, not just reading about it”. The students expressed feeling invested in the process of their learning as they saw their research “gradually come to life” through peer learning and practice during workshops. Based on the results of this study, the research methods course structure was successfully remodeled and continues to be delivered.Keywords: research methods, higher education instruction, flipped classroom, graduate education
Procedia PDF Downloads 10313521 Approach to Quantify Groundwater Recharge Using GIS Based Water Balance Model
Authors: S. S. Rwanga, J. M. Ndambuki
Abstract:
Groundwater quantification needs a method which is not only flexible but also reliable in order to accurately quantify its spatial and temporal variability. As groundwater is dynamic and interdisciplinary in nature, an integrated approach of remote sensing (RS) and GIS technique is very useful in various groundwater management studies. Thus, the GIS water balance model (WetSpass) together with remote sensing (RS) can be used to quantify groundwater recharge. This paper discusses the concept of WetSpass in combination with GIS on the quantification of recharge with a view to managing water resources in an integrated framework. The paper presents the simulation procedures and expected output after simulation. Preliminary data are presented from GIS output only.Keywords: groundwater, recharge, GIS, WetSpass
Procedia PDF Downloads 45013520 Understanding the Complex Relationship Between Economic Independency and Intimate Partner Violence by Applying a Socio-Ecological Analysis Framework
Authors: Suzanne Bouma
Abstract:
In the Netherlands, the assumed causal relationship between employment, economic independence and individual freedom of choice has been extended to the approach of intimate partner violence (IPV). In the interests of combating IPV, it is crucial to further investigate this relationship. Based on a literature review, this article shows that the relationship between economic independence and IPV is highly complex. To unravel this complex relationship, a socio-ecological analysis framework has been applied. First, it is a layered relation, in where employment does not necessarily lead to economic independence, which can be explained by social inequalities. Second, the relation is bidirectional, where women do not by definition have access to their own financial recourses due to tactics of financial control by the intimate partner. This reveals the coexistence of IPV and economic abuse and the extent to which an intimate relationship affects the scope for individual choice. Third, there is a paradoxical relationship in which employment is both a protective and risk factor for IPV. This, in turn, cannot be separated from traditional norms about masculinity and femininity, where men occupy a position of power and derive status from being the breadwinner. These findings imply that not only the approach to IPV but also the labor market policy requires a gender-sensitive approach.Keywords: intimate partner violence, economic independence, literature review, socio-ecological analysis framework
Procedia PDF Downloads 22813519 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 20113518 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.Keywords: altitude estimation, drone, image processing, trajectory planning
Procedia PDF Downloads 11313517 Food Processing Role in Ensuring Food and Health Security
Authors: Muhammad Haseeb
Abstract:
It is crucial to have a balanced approach to food's energy and nutritional content in a world with limited resources. The preservation of the environment is vital, and both the agrifood-making and food service sectors will be requested to use fewer resources to produce a wider range of existing foods and develop imaginative foods that are physiologically appropriate for a better sense of good health, have long shelf lives and are conveniently transportable. Delivering healthy diets that satisfy consumer expectations from robust and sustainable agrifood systems is necessary in a world that is changing and where natural resources are running out. Across the whole food supply chain, an integrated multi-sectoral approach is needed to alleviate global food and nutrition insecurity.Keywords: health, food, nutrition, supply chain
Procedia PDF Downloads 1813516 The Impact of a Cognitive Acceleration Program on Prospective Teachers' Reasoning Skills
Authors: Bernardita Tornero
Abstract:
Cognitive Acceleration in Mathematics Education (CAME) programmes have been used successfully for promoting the development of thinking skills in school students for the last 30 years. Given that the approach has had a tremendous impact on the thinking capabilities of participating students, this study explored the experience of using the programme with prospective primary teachers in Chile. Therefore, this study not only looked at the experience of prospective primary teachers during the CAME course as learners, but also examined how they perceived the approach from their perspective as future teachers, as well as how they could transfer the teaching strategies they observed to their future classrooms. Given the complexity of the phenomenon under study, this research used a mixed methods approach. For this reason, the impact that the CAME course had on prospective teachers’ thinking skills was not only approached by using a test that assessed the participants’ improvements in these skills, but their learning and teaching experiences were also recorded through qualitative research tools (learning journals, interviews and field notes). The main findings indicate that, at the end of the CAME course, prospective teachers not only demonstrated higher thinking levels, but also showed positive attitudinal changes towards teaching and learning in general, and towards mathematics in particular. The participants also had increased confidence in their ability to teach mathematics and to promote thinking skills in their students. In terms of the CAME methodology, prospective teachers not only found it novel and motivating, but also commented that dealing with the thinking skills topic during a university course was both unusual and very important for their professional development. This study also showed that, at the end of the CAME course, prospective teachers felt they had developed strategies that could be used in their classrooms in the future. In this context, the relevance of the study is not only that it described the impact and the positive results of the first experience of using a CAME approach with prospective teachers, but also that some of the conclusions have significant implications for the teaching of thinking skills and the training of primary school teachers.Keywords: cognitive acceleration, formal reasoning, prospective teachers, initial teacher training
Procedia PDF Downloads 40313515 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay
Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango
Abstract:
The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.Keywords: artificial vision, comet assay, DNA damage, image processing
Procedia PDF Downloads 31013514 Numerical Modelling of Surface Waves Generated by Low Frequency Electromagnetic Field for Silicon Refinement Process
Authors: V. Geza, J. Vencels, G. Zageris, S. Pavlovs
Abstract:
One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus. Therefore, a new approach could address this problem. We propose an approach of creating surface waves on silicon melt’s surface in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which includes coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.Keywords: numerical modelling, silicon refinement, surface waves, VOF method
Procedia PDF Downloads 252