Search results for: non uniform utility computing
624 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 70623 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 129622 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 90621 Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L
Authors: Ujala, Diksha Sharma, Mahinder Partap, Ashish R. Warghat, Bhavya Bhargava
Abstract:
In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula.Keywords: Tagetes patula, cultivation conditions, hydroponic, morpho-physiology
Procedia PDF Downloads 75620 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment
Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian
Abstract:
Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB
Procedia PDF Downloads 519619 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 13618 Novel Adomet Analogs as Tools for Nucleic Acids Labeling
Authors: Milda Nainyte, Viktoras Masevicius
Abstract:
Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases
Procedia PDF Downloads 195617 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication
Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu
Abstract:
The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in quadratic extension domain. The subexpanded domain 𝐹ₚ₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, the output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (𝐴𝐵 + 𝐶𝐷)𝑟⁻¹ mod 𝑀 form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.Keywords: sm9, hardware, NLP, Montgomery
Procedia PDF Downloads 10616 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4
Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini
Abstract:
This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter
Procedia PDF Downloads 148615 Destigmatising Generalised Anxiety Disorder: The Differential Effects of Causal Explanations on Stigma
Authors: John McDowall, Lucy Lightfoot
Abstract:
Stigma constitutes a significant barrier to the recovery and social integration of individuals affected by mental illness. Although there is some debate in the literature regarding the definition and utility of stigma as a concept, it is widely accepted that it comprises three components: stereotypical beliefs, prejudicial reactions, and discrimination. Stereotypical beliefs describe the cognitive knowledge-based component of stigma, referring to beliefs (often negative) about members of a group that is based on cultural and societal norms (e.g. ‘People with anxiety are just weak’). Prejudice refers to the affective/evaluative component of stigma and describes the endorsement of negative stereotypes and the resulting negative emotional reactions (e.g. ‘People with anxiety are just weak, and they frustrate me’). Discrimination refers to the behavioural component of stigma, which is arguably the most problematic, as it exerts a direct effect on the stigmatized person and may lead people to behave in a hostile or avoidant way towards them (i.e. refusal to hire them). Research exploring anti-stigma initiatives focus primarily on an educational approach, with the view that accurate information will replace misconceptions and decrease stigma. Many approaches take a biogenetic stance, emphasising brain and biochemical deficits - the idea being that ‘mental illness is an illness like any other.' While this approach tends to effectively reduce blame, it has also demonstrated negative effects such as increasing prognostic pessimism, the desire for social distance and perceptions of stereotypes. In the present study 144 participants were split into three groups and read one of three vignettes presenting causal explanations for Generalised Anxiety Disorder (GAD): One explanation emphasized biogenetic factors as being important in the etiology of GAD, another emphasised psychosocial factors (e.g. aversive life events, poverty, etc.), and a third stressed the adaptive features of the disorder from an evolutionary viewpoint. A variety of measures tapping the various components of stigma were administered following the vignettes. No difference in stigma measures as a function of causal explanation was found. People who had contact with mental illness in the past were significantly less stigmatising across a wide range of measures, but this did not interact with the type of causal explanation.Keywords: generalised anxiety disorder, discrimination, prejudice, stigma
Procedia PDF Downloads 287614 A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System
Authors: Niaz Gharavi, Hexin Zhang
Abstract:
In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus.Keywords: shear field test method, BS EN 408, timber shear modulus, photogrammetry approach
Procedia PDF Downloads 213613 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir
Authors: Fengxia Li, Lufeng Zhang, Haibo Wang
Abstract:
The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties
Procedia PDF Downloads 76612 Utility of Thromboelastography Derived Maximum Amplitude and R-Time (MA-R) Ratio as a Predictor of Mortality in Trauma Patients
Authors: Arulselvi Subramanian, Albert Venencia, Sanjeev Bhoi
Abstract:
Coagulopathy of trauma is an early endogenous coagulation abnormality that occurs shortly resulting in high mortality. In emergency trauma situations, viscoelastic tests may be better in identifying the various phenotypes of coagulopathy and demonstrate the contribution of platelet function to coagulation. We aimed to determine thrombin generation and clot strength, by estimating a ratio of Maximum amplitude and R-time (MA-R ratio) for identifying trauma coagulopathy and predicting subsequent mortality. Methods: We conducted a prospective cohort analysis of acutely injured trauma patients of the adult age groups (18- 50 years), admitted within 24hrs of injury, for one year at a Level I trauma center and followed up on 3rd day and 5th day of injury. Patients with h/o coagulation abnormalities, liver disease, renal impairment, with h/o intake of drugs were excluded. Thromboelastography was done and a ratio was calculated by dividing the MA by the R-time (MA-R). Patients were further stratified into sub groups based on the calculated MA-R quartiles. First sampling was done within 24 hours of injury; follow up on 3rd and 5thday of injury. Mortality was the primary outcome. Results: 100 acutely injured patients [average, 36.6±14.3 years; 94% male; injury severity score 12.2(9-32)] were included in the study. Median (min-max) on admission MA-R ratio was 15.01(0.4-88.4) which declined 11.7(2.2-61.8) on day three and slightly rose on day 5 13.1(0.06-68). There were no significant differences between sub groups in regard to age, or gender. In the lowest MA-R ratios subgroup; MA-R1 (<8.90; n = 27), injury severity score was significantly elevated. MA-R2 (8.91-15.0; n = 23), MA-R3 (15.01-19.30; n = 24) and MA-R4 (>19.3; n = 26) had no difference between their admission laboratory investigations, however slight decline was observed in hemoglobin, red blood cell count and platelet counts compared to the other subgroups. Also significantly prolonged R time, shortened alpha angle and MA were seen in MA-R1. Elevated incidence of mortality also significantly correlated with on admission low MA-R ratios (p 0.003). Temporal changes in the MA-R ratio did not correlated with mortality. Conclusion: The MA-R ratio provides a snapshot of early clot function, focusing specifically on thrombin burst and clot strength. In our observation, patients with the lowest MA-R time ratio (MA-R1) had significantly increased mortality compared with all other groups (45.5% MA-R1 compared with <25% in MA-R2 to MA-R3, and 9.1% in MA-R4; p < 0.003). Maximum amplitude and R-time may prove highly useful to predict at-risk patients early, when other physiologic indicators are absent.Keywords: coagulopathy, trauma, thromboelastography, mortality
Procedia PDF Downloads 175611 Cu₂(ZnSn)(S)₄ Electrodeposition from a Single Bath for Photovoltaic Applications
Authors: Mahfouz Saeed
Abstract:
Cu₂(ZnSn)(S)₄ (CTZS) offers potential advantages over CuInGaSe₂ (CIGS) as solar thin film because to its higher band gap. Preparing such photovoltaic materials by electrochemical techniques is particularly attractive due to the lower processing cost and the high throughput of such techniques. Several recent publications report CTZS electroplating; however, the electrochemical process still facing serious challenges such as a sulfur atomic ration which is about 50% of the total alloy. We introduce in this work an improved electrolyte composition which enables the direct electrodeposition of CTZS from a single bath. The electrolyte is significantly more dilute in comparison to common baths described in the literature. The bath composition we introduce is: 0.0032 M CuSO₄, 0.0021 M ZnSO₄, 0.0303 M SnCl₂, 0.0038 M Na₂S₂O₃, and 0.3 mM Na₂S₂O3. PHydrion is applied to buffer the electrolyte to pH=2, and 0.7 M LiCl is applied as supporting electrolyte. Electrochemical process was carried at a rotating disk electrode which provides quantitative characterization of the flow (room temperature). Comprehensive electrochemical behavior study at different electrode rotation rates are provided. The effects of agitation on atomic composition of the deposit and its adhesion to the molybdenum back contact are discussed. The post treatment annealing was conducted under sulfur atmosphere with no need for metals addition from the gas phase during annealing. The potential which produced the desired atomic ratio of CTZS at -0.82 V/NHE. Smooth deposit, with uniform composition across the sample surface and depth was obtained at 500 rpm rotation speed. Final sulfur atomic ratio was adjusted to 50.2% in order to have the desired atomic ration. The final composition was investigated using Energy-dispersive X-ray spectroscopy technique (EDS). XRD technique used to analyze CTZS crystallography and thickness. Complete and functional CTZS PV devices were fabricated by depositing all the required layers in the correct order and the desired optical properties. Acknowledgments: Case Western Reserve University for the technical help and for using their instruments.Keywords: photovoltaic, CTZS, thin film, electrochemical
Procedia PDF Downloads 244610 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises
Procedia PDF Downloads 62609 Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight
Authors: E. Vlachopapadopoulou, E. Dikaiakou, E. Anagnostou, I. Panagiotopoulos, E. Kaloumenou, M. Kafetzi, A. Fotinou, S. Michalacos
Abstract:
Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance.Keywords: body fat weight, body mass index, insulin resistance, obese children, waist circumference
Procedia PDF Downloads 320608 Magnetic Bio-Nano-Fluids for Hyperthermia
Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak
Abstract:
Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron
Procedia PDF Downloads 416607 Study on the Effect of Pre-Operative Patient Education on Post-Operative Outcomes
Authors: Chaudhary Itisha, Shankar Manu
Abstract:
Patient satisfaction represents a crucial aspect in the evaluation of health care services. Preoperative teaching provides the patient with pertinent information concerning the surgical process and the intended surgical procedure as well as anticipated patient behavior (anxiety, fear), expected sensation, and the probable outcomes. Although patient education is part of Accreditation protocols, it is not uniform at most places. The aim of this study was to try to assess the benefit of preoperative patient education on selected post-operative outcome parameters; mainly, post-operative pain scores, requirement of additional analgesia, return to activity of daily living and overall patient satisfaction, and try to standardize few education protocols. Dependent variables were measured before and after the treatment on a study population of 302 volunteers. Educational intervention was provided by the Investigator in the preoperative period to the study group through personal counseling. An information booklet contained detailed information was also provided. Statistical Analysis was done using Chi square test, Mann Whitney u test and Fischer Exact Test on a total of 302 subjects. P value <0.05 was considered as level of statistical significance and p<0.01 was considered as highly significant. This study suggested that patients who are given a structured, individualized and elaborate preoperative education and counseling have a better ability to cope up with postoperative pain in the immediate post-operative period. However, there was not much difference when the patients have had almost complete recovery. There was no difference in the requirement of additional analgesia among the two groups. There is a positive effect of preoperative counseling on expected return to the activities of daily living and normal work schedule. However, no effect was observed on the activities in the immediate post-operative period. There is no difference in the overall satisfaction score among the two groups of patients. Thus this study concludes that there is a positive benefit as suggested by the results for pre-operative patient education. Although the difference in various parameters studied might not be significant over a long term basis, they definitely point towards the benefits of preoperative patient education.Keywords: patient education, post-operative pain, postoperative outcomes, patient satisfaction
Procedia PDF Downloads 340606 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques
Procedia PDF Downloads 75605 Green It-Outsourcing Assurance Model for It-Outsourcing Vendors
Authors: Siffat Ullah Khan, Rahmat Ullah Khan, Rafiq Ahmad Khan, Habibullah Khan
Abstract:
Green IT or green computing has emerged as a fast growing business paradigm in recent years in order to develop energy-efficient Software and peripheral devices. With the constant evolution of technology and the world critical environmental status, all private and public information technology (IT) businesses are moving towards sustainability. We identified, through systematic literature review and questionnaire survey, 9 motivators, in total, faced by vendors in IT-Outsourcing relationship. Amongst these motivators 7 were ranked as critical motivators. We also identified 21, in total, practices for addressing these critical motivators. Based on these inputs we have developed Green IT-Outsourcing Assurance Model (GITAM) for IT-Outsourcing vendors. The model comprises four different levels. i.e. Initial, White, Green and Grey. Each level comprises different critical motivators and their relevant practices. We conclude that our model, GITAM, will assist IT-Outsourcing vendors in gauging their level in order to manage IT-Outsourcing activities in a green and sustainable fashion to assist the environment and to reduce the carbon emission. The model will assist vendors in improving their current level by suggesting various practices. The model will contribute to the body of knowledge in the field of Green IT.Keywords: Green IT-outsourcing Assurance Model (GITAM), Systematic Literature Review, Empirical Study, Case Study
Procedia PDF Downloads 253604 Investigating the Usability of a University Website from the Users’ Perspective: An Empirical Study of Benue State University Website
Authors: Abraham Undu, Stephen Akuma
Abstract:
Websites are becoming a major component of an organization’s success in our ever globalizing competitive world. The website symbolizes an organization, interacting or projecting an organization’s principles, culture, values, vision, and perspectives. It is an interface connecting organizations and their clients. The university, as an academic institution, makes use of a website to communicate and offer computing services to its stakeholders (students, staff, host community, university management etc). Unfortunately, website designers often give more consideration to the technology, organizational structure and business objectives of the university than to the usability of the site. Website designers end up designing university websites which do not meet the needs of the primary users. This empirical study investigated the Benue State University website from the point view of students. This research was realized by using a standardized website usability questionnaire based on the five factors of usability defined by WAMMI (Website Analysis and Measurement Inventory): attractiveness, controllability, efficiency, learnability and helpfulness. The result of the investigation showed that the university website (https://portal.bsum.edu.ng/) has neutral usability level because of the usability issues associated with the website. The research recommended feasible solutions to improve the usability of the website from the users’ perspective and also provided a modified usability model that will be used for better evaluation of the Benue State University website.Keywords: Benue State University, modified usability model, usability, usability factors
Procedia PDF Downloads 152603 Thickness-Tunable Optical, Magnetic, and Dielectric Response of Lithium Ferrite Thin Film Synthesized by Pulsed Laser Deposition
Authors: Prajna Paramita Mohapatra, Pamu Dobbidi
Abstract:
Lithium ferrite (LiFe5O8) has potential applications as a component of microwave magnetic devices such as circulators and monolithic integrated circuits. For efficient device applications, spinel ferrites in the form of thin films are highly required. It is necessary to improve their magnetic and dielectric behavior by optimizing the processing parameters during deposition. The lithium ferrite thin films are deposited on Pt/Si substrate using the pulsed laser deposition technique (PLD). As controlling the film thickness is the easiest parameter to tailor the strain, we deposited the thin films having different film thicknesses (160 nm, 200 nm, 240 nm) at oxygen partial pressure of 0.001 mbar. The formation of single phase with spinel structure (space group - P4132) is confirmed by the XRD pattern and the Rietveld analysis. The optical bandgap is decreased with the increase in thickness. FESEM confirmed the formation of uniform grains having well separated grain boundaries. Further, the film growth and the roughness are analyzed by AFM. The root-mean-square (RMS) surface roughness is decreased from 13.52 nm (160 nm) to 9.34 nm (240 nm). The room temperature magnetization is measured with a maximum field of 10 kOe. The saturation magnetization is enhanced monotonically with an increase in thickness. The magnetic resonance linewidth is obtained in the range of 450 – 780 Oe. The dielectric response is measured in the frequency range of 104 – 106 Hz and in the temperature range of 303 – 473 K. With an increase in frequency, the dielectric constant and the loss tangent of all the samples decreased continuously, which is a typical behavior of conventional dielectric material. The real part of the dielectric constant and the dielectric loss is increased with an increase in thickness. The contribution of grain and grain boundaries is also analyzed by employing the equivalent circuit model. The highest dielectric constant is obtained for the film having a thickness of 240 nm at 104 Hz. The obtained results demonstrate that desired response can be obtained by tailoring the film thickness for the microwave magnetic devices.Keywords: PLD, optical response, thin films, magnetic response, dielectric response
Procedia PDF Downloads 98602 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses
Authors: Matthew Baucum
Abstract:
With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.Keywords: FMRI, machine learning, meta-analysis, text analysis
Procedia PDF Downloads 450601 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University
Authors: Greg Turner, Bin Lu, Cheer-Sun Yang
Abstract:
As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.Keywords: agile methods, mobile apps, software process model, waterfall model
Procedia PDF Downloads 409600 In situ Investigation of PbI₂ Precursor Film Formation and Its Subsequent Conversion to Mixed Cation Perovskite
Authors: Dounya Barrit, Ming-Chun Tang, Hoang Dang, Kai Wang, Detlef-M. Smilgies, Aram Amassian
Abstract:
Several deposition methods have been developed for perovskite film preparation. The one-step spin-coating process has emerged as a more popular option thanks to its ability to produce films of different compositions, including mixed cation and mixed halide perovskites, which can stabilize the perovskite phase and produce phases with desired band gap. The two-step method, however, is not understood in great detail. There is a significant need and opportunity to adopt the two-step process toward mixed cation and mixed halide perovskites, but this requires deeper understanding of the two-step conversion process, for instance when using different cations and mixtures thereof, to produce high-quality perovskite films with uniform composition. In this work, we demonstrate using in situ investigations that the conversion of PbI₂ to perovskite is largely dictated by the state of the PbI₂ precursor film in terms of its solvated state. Using time-resolved grazing incidence wide-angle X-Ray scattering (GIWAXS) measurements during spin coating of PbI₂ from a DMF (Dimethylformamide) solution we show the film formation to be a sol-gel process involving three PbI₂-DMF solvate complexes: disordered precursor (P₀), ordered precursor (P₁, P₂) prior to PbI₂ formation at room temperature after 5 minutes. The ordered solvates are highly metastable and eventually disappear, but we show that performing conversion from P₀, P₁, P₂ or PbI₂ can lead to very different conversion behaviors and outcomes. We compare conversion behaviors by using MAI (Methylammonium iodide), FAI (Formamidinium Iodide) and mixtures of these cations, and show that conversion can occur spontaneously and quite rapidly at room temperature without requiring further thermal annealing. We confirm this by demonstrating improvements in the morphology and microstructure of the resulting perovskite films, using techniques such as in situ quartz crystal microbalance with dissipation monitoring, SEM and XRD.Keywords: in situ GIWAXS, lead iodide, mixed cation, perovskite solar cell, sol-gel process, solvate phase
Procedia PDF Downloads 148599 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City
Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi
Abstract:
Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis
Procedia PDF Downloads 35598 Overview of Multi-Chip Alternatives for 2.5 and 3D Integrated Circuit Packagings
Authors: Ching-Feng Chen, Ching-Chih Tsai
Abstract:
With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to the development of the high numerical aperture (high-NA) lithography equipment and other issues such as short channel effects. In the context of the ever-increasing technical requirements of portable devices and high-performance computing, relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (ICs) based on the updated transistor structure and technology nodes. The author concludes that multi-chip solutions for 2.5D and 3D IC packagings are feasible to prolong Moore’s Law.Keywords: moore’s law, high numerical aperture, power consumption-performance-area-cost-cycle time to market, 2.5 and 3D- very-large-scale integration, packaging, through silicon via
Procedia PDF Downloads 114597 Outdoor Visible Light Communication Channel Modeling under Fog and Smoke Conditions
Authors: Véronique Georlette, Sebastien Bette, Sylvain Brohez, Nicolas Point, Veronique Moeyaert
Abstract:
Visible light communication (VLC) is a communication technology that is part of the optical wireless communication (OWC) family. It uses the visible and infrared spectrums to send data. For now, this technology has widely been studied for indoor use-cases, but it is sufficiently mature nowadays to consider the outdoor environment potentials. The main outdoor challenges are the meteorological conditions and the presence of smoke due to fire or pollutants in urban areas. This paper proposes a methodology to assess the robustness of an outdoor VLC system given the outdoor conditions. This methodology is put into practice in two realistic scenarios, a VLC bus stop, and a VLC streetlight. The methodology consists of computing the power margin available in the system, given all the characteristics of the VLC system and its surroundings. This is done thanks to an outdoor VLC communication channel simulator developed in Python. This simulator is able to quantify the effects of fog and smoke thanks to models taken from environmental and fire engineering scientific literature as well as the optical power reaching the receiver. These two phenomena impact the communication by increasing the total attenuation of the medium. The main conclusion drawn in this paper is that the levels of attenuation due to fog and smoke are in the same order of magnitude. The attenuation of fog being the highest under the visibility of 1 km. This gives a promising prospect for the deployment of outdoor VLC uses-cases in the near future.Keywords: channel modeling, fog modeling, meteorological conditions, optical wireless communication, smoke modeling, visible light communication
Procedia PDF Downloads 150596 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 45595 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 61