Search results for: dimensionless parameter
219 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects
Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet
Abstract:
New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.Keywords: auditory feedback, gesture sonification, sound perception, virtual object
Procedia PDF Downloads 302218 Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production
Authors: Zeynep Yilmazer Hitit, Patrick C. Hallenbeck
Abstract:
Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production.Keywords: biohydrogen, Clostridium butyricum, dark fermentation, Enterobacter aerogenes, inoculum ratio in biohydrogen production
Procedia PDF Downloads 236217 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 409216 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears
Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally
Abstract:
Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection
Procedia PDF Downloads 211215 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit
Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha
Abstract:
Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics
Procedia PDF Downloads 81214 A Reduced Ablation Model for Laser Cutting and Laser Drilling
Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz
Abstract:
In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling
Procedia PDF Downloads 214213 Prevalence of Rituximab Efficacy Over Immunosuppressants in Therapy of Systemic Sclerosis
Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva
Abstract:
Abstract Objectives. Rituximab (RTX) shown a positive effect in the treatment of systemic sclerosis (SSc). But there is still not enough data on comparing the effectiveness of RTX with immunosuppressants (IS). The aim of our study was to compare changes of lung function and skin score in SSc between two groups of patients (pts) - on RXT therapy (prescribed after ineffectiveness of previous therapy with IS) and on therapy with IS only. Methods. This study included 103 pts received RTX as an addition to previous therapy (group 1) and 65 pts received therapy with IS and prednisolone (group 2). The mean follow-up period was 12.6±10.7months. In group 1 the mean age was 47±12.9 years, female – 88 pts (84%), the diffuse cutaneous subset of the disease had 55 pts (53%). The mean disease duration was 6.2±5.5 years. 82% pts had interstitial lung disease (ILD) and 92% were positive for ANA, 67% of them were positive for antitopoisomerase-1. All pts received prednisolone at a dose of 11.3±4.5 mg/day, IS at inclusion received 47% of them. The cumulative mean dose of RTX was 1.7±0.6 g. In group 2 the mean age was 50.8±13.8 years, female-53 pts (82%), the diffuse cutaneous subset of the disease had 44 pts (68%). The mean disease duration was 8.8±7.7 years. 81% pts had ILD and 88% were positive for ANA, 58% of them were positive for antitopoisomerase-1. All pts received prednisolone at a dose of 8.69±4.28 mg/day, IS received 57% of them. Cyclophosphamide (CP) received 45% of pts. The cumulative mean dose of CP was 10.2±15.1g. D-penicillamine received 30% of pts. Other pts was on mycophenolate mofetil or methotrexate therapy in single cases. The pts of the compared groups did not differ in the main demographic and clinical parameters. The results are presented as delta (Δ) - difference between the baseline parameter and follow up point. Results. In group 1 there was an improvement of all outcome parameters: increased of forced vital capacity, % predicted - ΔFVC=4% (p=0.0004); Diffusing capacity for carbon monoxide, % predicted remained stable (ΔDLCO=0.1%); improvement of the Rodnan skin score-ΔmRss=3.4 (p=0.001); decrease of Activity index (EScSG-AI) - ΔActivity index=1.7 (p=0.001). In group 2 the changes was insignificant: ΔFVC=-2.3%, ΔmRss=0.87, ΔActivity index=0.3. But there was a significant decrease of DLCO: ΔDLCO=-5.1% (p=0.001). Conclusion. The results of our study confirm the data on the positive effect of RTX in complex therapy in pts with SSc (decrease of skin induration, increase of FVC, stabilization of DLCO). Meantime, pts on IS and prednisolone therapy shown the worsening of lung function and insignificant changes of other clinical parameters. RTX could be considered as a more effective option in complex treatment of SSc in comparison with IS therapyKeywords: immunosuppressants, interstitial lung disease, systemic sclerosis, rituximab
Procedia PDF Downloads 83212 Enhancement of Shelflife of Malta Fruit with Active Packaging
Authors: Rishi Richa, N. C. Shahi, J. P. Pandey, S. S. Kautkar
Abstract:
Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months.Keywords: Malta fruit, scavenger, packaging, shelf life
Procedia PDF Downloads 280211 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine
Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam
Abstract:
Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems
Procedia PDF Downloads 87210 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice
Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha
Abstract:
Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics
Procedia PDF Downloads 68209 Imaging of Underground Targets with an Improved Back-Projection Algorithm
Authors: Alireza Akbari, Gelareh Babaee Khou
Abstract:
Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.Keywords: algorithm, back-projection, GPR, remote sensing
Procedia PDF Downloads 452208 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms
Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan
Abstract:
With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves
Procedia PDF Downloads 188207 Evaluation of the Photo Neutron Contamination inside and outside of Treatment Room for High Energy Elekta Synergy® Linear Accelerator
Authors: Sharib Ahmed, Mansoor Rafi, Kamran Ali Awan, Faraz Khaskhali, Amir Maqbool, Altaf Hashmi
Abstract:
Medical linear accelerators (LINAC’s) used in radiotherapy treatments produce undesired neutrons when they are operated at energies above 8 MeV, both in electron and photon configuration. Neutrons are produced by high-energy photons and electrons through electronuclear (e, n) a photonuclear giant dipole resonance (GDR) reactions. These reactions occurs when incoming photon or electron incident through the various materials of target, flattening filter, collimators, and other shielding components in LINAC’s structure. These neutrons may reach directly to the patient, or they may interact with the surrounding materials until they become thermalized. A work has been set up to study the effect of different parameter on the production of neutron around the room by photonuclear reactions induced by photons above ~8 MeV. One of the commercial available neutron detector (Ludlum Model 42-31H Neutron Detector) is used for the detection of thermal and fast neutrons (0.025 eV to approximately 12 MeV) inside and outside of the treatment room. Measurements were performed for different field sizes at 100 cm source to surface distance (SSD) of detector, at different distances from the isocenter and at the place of primary and secondary walls. Other measurements were performed at door and treatment console for the potential radiation safety concerns of the therapists who must walk in and out of the room for the treatments. Exposures have taken place from Elekta Synergy® linear accelerators for two different energies (10 MV and 18 MV) for a given 200 MU’s and dose rate of 600 MU per minute. Results indicates that neutron doses at 100 cm SSD depend on accelerator characteristics means jaw settings as jaws are made of high atomic number material so provides significant interaction of photons to produce neutrons, while doses at the place of larger distance from isocenter are strongly influenced by the treatment room geometry and backscattering from the walls cause a greater doses as compare to dose at 100 cm distance from isocenter. In the treatment room the ambient dose equivalent due to photons produced during decay of activation nuclei varies from 4.22 mSv.h−1 to 13.2 mSv.h−1 (at isocenter),6.21 mSv.h−1 to 29.2 mSv.h−1 (primary wall) and 8.73 mSv.h−1 to 37.2 mSv.h−1 (secondary wall) for 10 and 18 MV respectively. The ambient dose equivalent for neutrons at door is 5 μSv.h−1 to 2 μSv.h−1 while at treatment console room it is 2 μSv.h−1 to 0 μSv.h−1 for 10 and 18 MV respectively which shows that a 2 m thick and 5m longer concrete maze provides sufficient shielding for neutron at door as well as at treatment console for 10 and 18 MV photons.Keywords: equivalent doses, neutron contamination, neutron detector, photon energy
Procedia PDF Downloads 449206 Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan
Authors: Mehmood Ali, Attaullah Khan, Md. Abul Kalam
Abstract:
Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties.Keywords: biodiesel, Jatropha curcas, mechanical property, physico-chemical properties
Procedia PDF Downloads 141205 A Study on Inverse Determination of Impact Force on a Honeycomb Composite Panel
Authors: Hamed Kalhori, Lin Ye
Abstract:
In this study, an inverse method was developed to reconstruct the magnitude and duration of impact forces exerted to a rectangular carbon fibre-epoxy composite honeycomb sandwich panel. The dynamic signals captured by Piezoelectric (PZT) sensors installed on the panel remotely from the impact locations were utilized to reconstruct the impact force generated by an instrumented hammer through an extended deconvolution approach. Two discretized forms of convolution integral are considered; the traditional one with an explicit transfer function and the modified one without an explicit transfer function. Deconvolution, usually applied to reconstruct the time history (e.g. magnitude) of a stochastic force at a defined location, is extended to identify both the location and magnitude of the impact force among a number of potential impact locations. It is assumed that a number of impact forces are simultaneously exerted to all potential locations, but the magnitude of all forces except one is zero, implicating that the impact occurs only at one location. The extended deconvolution is then applied to determine the magnitude as well as location (among the potential ones), incorporating the linear superposition of responses resulted from impact at each potential location. The problem can be categorized into under-determined (the number of sensors is less than that of impact locations), even-determined (the number of sensors equals that of impact locations), or over-determined (the number of sensors is greater than that of impact locations) cases. For an under-determined case, it comprises three potential impact locations and one PZT sensor for the rectangular carbon fibre-epoxy composite honeycomb sandwich panel. Assessments are conducted to evaluate the factors affecting the precision of the reconstructed force. Truncated Singular Value Decomposition (TSVD) and the Tikhonov regularization are independently chosen to regularize the problem to find the most suitable method for this system. The selection of optimal value of the regularization parameter is investigated through L-curve and Generalized Cross Validation (GCV) methods. In addition, the effect of different width of signal windows on the reconstructed force is examined. It is observed that the impact force generated by the instrumented impact hammer is sensitive to the impact locations of the structure, having a shape from a simple half-sine to a complicated one. The accuracy of the reconstructed impact force is evaluated using the correlation co-efficient between the reconstructed force and the actual one. Based on this criterion, it is concluded that the forces reconstructed by using the extended deconvolution without an explicit transfer function together with Tikhonov regularization match well with the actual forces in terms of magnitude and duration.Keywords: honeycomb composite panel, deconvolution, impact localization, force reconstruction
Procedia PDF Downloads 535204 Part Variation Simulations: An Industrial Case Study with an Experimental Validation
Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru
Abstract:
Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation
Procedia PDF Downloads 178203 A Design Research Methodology for Light and Stretchable Electrical Thermal Warm-Up Sportswear to Enhance the Performance of Athletes against Harsh Environment
Authors: Chenxiao Yang, Li Li
Abstract:
In this decade, the sportswear market rapidly expanded while numerous sports brands are conducting fierce competitions to hold their market shares and trying to act as a leader in professional competition sports areas to set the trends. Thus, various advancing sports equipment is being deeply explored to improving athletes’ performance in fierce competitions. Although there is plenty protective equipment such as cuff, running legging, etc., on the market, there is still blank in the field of sportswear during prerace warm-up this important time gap, especially for those competitions host in cold environment. Because there is always time gaps between warm-up and race due to event logistics or unexpected weather factors. Athletes will be exposed to chilly condition for an unpredictable long period of time. As a consequence, the effects of warm-up will be negated, and the competition performance will be degraded. However, reviewing the current market, there is none effective sports equipment provided to help athletes against this harsh environment or the rare existing products are so blocky or heavy to restrict the actions. An ideal thermal-protective sportswear should be light, flexible, comfort and aesthetic at the same time. Therefore, this design research adopted the textile circular knitting methodology to integrate soft silver-coated conductive yarns (ab. SCCYs), elastic nylon yarn and polyester yarn to develop the proposed electrical, thermal sportswear, with the strengths aforementioned. Meanwhile, the relationship between heating performance, stretch load, and energy consumption were investigated. Further, a simulation model was established to ensure providing sufficient warm and flexibility at lower energy cost and with an optimized production, parameter determined. The proposed circular knitting technology and simulation model can be directly applied to instruct prototype developments to cater different target consumers’ needs and ensure prototypes’’ safety. On the other hand, high R&D investment and time consumption can be saved. Further, two prototypes: a kneecap and an elbow guard, were developed to facilitate the transformation of research technology into an industrial application and to give a hint on the blur future blueprint.Keywords: cold environment, silver-coated conductive yarn, electrical thermal textile, stretchable
Procedia PDF Downloads 269202 Seismic Impact and Design on Buried Pipelines
Authors: T. Schmitt, J. Rosin, C. Butenweg
Abstract:
Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.Keywords: buried pipeline, earthquake, seismic impact, transient displacement
Procedia PDF Downloads 187201 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples
Authors: Ahmed S. Fayed, Umima M. Mansour
Abstract:
Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol
Procedia PDF Downloads 219200 Flexural Properties of Typha Fibers Reinforced Polyester Composite
Authors: Sana Rezig, Yosr Ben Mlik, Mounir Jaouadi, Foued Khoffi, Slah Msahli, Bernard Durand
Abstract:
Increasing interest in environmental concerns, natural fibers are once again being considered as reinforcements for polymer composites. The main objective of this study is to explore another natural resource, Typha fiber; which is renewable without production cost and available abundantly in nature. The aim of this study was to study the flexural properties of composite resin with and without reinforcing Typha leaf and stem fibers. The specimens were made by the hand-lay-up process using polyester matrix. In our work, we focused on the effect of various treatment conditions (sea water, alkali treatment and a combination of the two treatments), as a surface modifier, on the flexural properties of the Typha fibers reinforced polyester composites. Moreover, weight ratio of Typha leaf or stem fibers was investigated. Besides, both fibers from leaf and stem of Typha plant were used to evaluate the reinforcing effect. Another parameter, which is reinforcement structure, was investigated. In fact, a first composite was made with air-laid nonwoven structure of fibers. A second composite was with a mixture of fibers and resin for each kind of treatment. Results show that alkali treatment and combined process provided better mechanical properties of composites in comparison with fiber treated by sea water. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural strength of 69.8 and 62,32 MPa with flexural modulus of 6.16 and 6.34 GPawas observed respectively for composite reinforced with leaf and stem fibers for 12.6 % fiber weight ratio. For the different treatments carried out, the treatment using caustic soda, whether alone or after retting seawater, show the best results because it improves adhesion between the polyester matrix and the fibers of reinforcement. SEM photographs were made to ascertain the effects of the surface treatment of the fibers. By varying the structure of the fibers of Typha, the reinforcement used in bulk shows more effective results as that used in the non-woven structure. In addition, flexural strength rises with about (65.32 %) in the case of composite reinforced with a mixture of 12.6% leaf fibers and (27.45 %) in the case of a composite reinforced with a nonwoven structure of 12.6 % of leaf fibers. Thus, to better evaluate the effect of the fiber origin, the reinforcing structure, the processing performed and the reinforcement factor on the performance of composite materials, a statistical study was performed using Minitab. Thus, ANOVA was used, and the patterns of the main effects of these parameters and interaction between them were established. Statistical analysis, the fiber treatment and reinforcement structure seem to be the most significant parameters.Keywords: flexural properties, fiber treatment, structure and weight ratio, SEM photographs, Typha leaf and stem fibers
Procedia PDF Downloads 415199 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films
Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh
Abstract:
According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.Keywords: memristor, quantum dot, resistive switching, thin film
Procedia PDF Downloads 122198 Downtime Estimation of Building Structures Using Fuzzy Logic
Authors: M. De Iuliis, O. Kammouh, G. P. Cimellaro, S. Tesfamariam
Abstract:
Community Resilience has gained a significant attention due to the recent unexpected natural and man-made disasters. Resilience is the process of maintaining livable conditions in the event of interruptions in normally available services. Estimating the resilience of systems, ranging from individuals to communities, is a formidable task due to the complexity involved in the process. The most challenging parameter involved in the resilience assessment is the 'downtime'. Downtime is the time needed for a system to recover its services following a disaster event. Estimating the exact downtime of a system requires a lot of inputs and resources that are not always obtainable. The uncertainties in the downtime estimation are usually handled using probabilistic methods, which necessitates acquiring large historical data. The estimation process also involves ignorance, imprecision, vagueness, and subjective judgment. In this paper, a fuzzy-based approach to estimate the downtime of building structures following earthquake events is proposed. Fuzzy logic can integrate descriptive (linguistic) knowledge and numerical data into the fuzzy system. This ability allows the use of walk down surveys, which collect data in a linguistic or a numerical form. The use of fuzzy logic permits a fast and economical estimation of parameters that involve uncertainties. The first step of the method is to determine the building’s vulnerability. A rapid visual screening is designed to acquire information about the analyzed building (e.g. year of construction, structural system, site seismicity, etc.). Then, a fuzzy logic is implemented using a hierarchical scheme to determine the building damageability, which is the main ingredient to estimate the downtime. Generally, the downtime can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by rational and irrational delays (DT2); and downtime due to utilities disruption (DT3). In this work, DT1 is computed by relating the building damageability results obtained from the visual screening to some already-defined components repair times available in the literature. DT2 and DT3 are estimated using the REDITM Guidelines. The Downtime of the building is finally obtained by combining the three components. The proposed method also allows identifying the downtime corresponding to each of the three recovery states: re-occupancy; functional recovery; and full recovery. Future work is aimed at improving the current methodology to pass from the downtime to the resilience of buildings. This will provide a simple tool that can be used by the authorities for decision making.Keywords: resilience, restoration, downtime, community resilience, fuzzy logic, recovery, damage, built environment
Procedia PDF Downloads 160197 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 290196 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case
Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz
Abstract:
The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.Keywords: catalyst, upgrading, aquathermolysis, steam
Procedia PDF Downloads 110195 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range
Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva
Abstract:
Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability
Procedia PDF Downloads 155194 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation
Procedia PDF Downloads 245193 Platelet Volume Indices: Emerging Markers of Diabetic Thrombocytopathy
Authors: Mitakshara Sharma, S. K. Nema
Abstract:
Diabetes mellitus (DM) is metabolic disorder prevalent in pandemic proportions, incurring significant morbidity and mortality due to associated vascular angiopathies. Platelet related thrombogenesis plays key role in pathogenesis of these complications. Most patients with type II DM suffer from preventable vascular complications and early diagnosis can help manage these successfully. These complications are attributed to platelet activation which can be recognised by the increase in Platelet Volume Indices(PVI) viz. Mean Platelet Volume(MPV) and Platelet Distribution Width(PDW). This study was undertaken with the aim of finding a relationship between PVI and vascular complications of Diabetes mellitus, their importance as a causal factor in these complications and use as markers for early detection of impending vascular complications in patients with poor glycaemic status. This is a cross-sectional study conducted for 2 years with total 930 subjects. The subjects were segregated in 03 groups on basis of glycosylated haemoglobin (HbA1C) as: - (a) Diabetic, (b) Non-Diabetic and (c) Subjects with Impaired fasting glucose(IFG) with 300 individuals in IFG and non-diabetic group & 330 individuals in diabetic group. The diabetic group was further divided into two groups: - (a) Diabetic subjects with diabetes related vascular complications (b) Diabetic subjects without diabetes related vascular complications. Samples for HbA1C and platelet indices were collected using Ethylene diamine tetracetic acid(EDTA) as anticoagulant and processed on SYSMEX-XS-800i autoanalyser. The study revealed stepwise increase in PVI from non-diabetics to IFG to diabetics. MPV and PDW of diabetics, IFG and non diabetics were 17.60 ± 2.04, 11.76 ± 0.73, 9.93 ± 0.64 and 19.17 ± 1.48, 15.49 ± 0.67, 10.59 ± 0.67 respectively with a significant p value 0.00 and a significant positive correlation (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). However, significant negative correlation was found between glycaemic levels and total platelet count (PC- HbA1c r =-0.164). MPV & PDW of subjects with and without diabetes related complications were (15.14 ± 1.04) fl & (17.51±0.39) fl and (18.96 ± 0.83) fl & (20.09 ± 0.98) fl respectively with a significant p value 0.00.The current study demonstrates raised platelet indices & reduced platelet counts in association with rising glycaemic levels and diabetes related vascular complications across various study groups & showed that platelet morphology is altered with increasing glycaemic levels. These changes can be known by measurements of PVI which are important, simple, cost effective, effortless tool & indicators of impending vascular complications in patients with deranged glycaemic control. PVI should be researched and explored further as surrogate markers to develop a clinical tool for early recognition of vascular changes related to diabetes and thereby help prevent them. They can prove to be more useful in developing countries with limited resources. This study is multi-parameter, comprehensive with adequately powered study design and represents pioneering effort in India on account of the fact that both Platelet indices (MPV & PDW) along with platelet count have been evaluated together for the first time in Diabetics, non diabetics, patients with IFG and also in the diabetic patients with and without diabetes related vascular complications.Keywords: diabetes, HbA1C, IFG, MPV, PDW, PVI
Procedia PDF Downloads 239192 Glutamine Supplementation and Resistance Traning on Anthropometric Indices, Immunoglobulins, and Cortisol Levels
Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi
Abstract:
Introduction: Exercise has contradictory effects on the immune system. Glutamine supplementation may increase the resistance of the immune system in athletes. The Glutamine is one of the most recognized immune nutrients that as a fuel source, substrate in the synthesis of nucleotides and amino acids and is also known to be part of the antioxidant defense. Several studies have shown that improving glutamine levels in plasma and tissues can have beneficial effects on the function of immune cells such as lymphocytes and neutrophils. This study aimed to investigate the effects of resistance training and training combined with glutamine supplementation to improve the levels of cortisol and immunoglobulin in untrained young men. The research shows that physical training can increase the cytokines in the athlete’s body of course; glutamine can counteract the negative effects of resistance training on immune function and stability of the mast cell membrane. Materials and methods: This semi-experimental study was conducted on 30 male non-athletes. They were randomly divided into three groups: control (no exercise), resistance training, resistance training and glutamine supplementation, respectively. Resistance training for 4 weeks and glutamine supplementation in 0.3 gr/kg/day after practice was applied. The resistance-training program consisted of eight exercises (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. Participants performed 3 sets of 10 repetitions at 60–75% 1-RM. Anthropometry indexes (weight, body mass index, and body fat percentage), oxygen uptake (VO2max) Maximal, cortisol levels of immunoglobulins (IgA, IgG, IgM) were evaluated Pre- and post-test. Results: Results showed four week resistance training with and without glutamine cause significant increase in body weight, BMI and significantly decreased (P < 0/001) in BF. Vo2max also increased in both groups of exercise (P < 0/05) and exercise with glutamine (P < 0/001), such as in both groups significant reduction in IgG (P < 0/05) was observed. But no significant difference observed in levels of cortisol, IgA, IgM in any of the groups. No significant change observed in either parameter in the control group. No significant difference observed between the groups. Discussion: The alterations in the hormonal and immunological parameters can be used in order to assess the effect overload on the body, whether acute or chronically. The plasmatic concentration of glutamine has been associated to the functionality of the immunological system in individuals sub-mitted to intense physical training. resistance training has destructive effects on the immune system and glutamine supplementation cannot neutralize the damaging effects of power exercise on the immune system.Keywords: glutamine, resistance traning, immuglobulins, cortisol
Procedia PDF Downloads 479191 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal
Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota
Abstract:
This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.Keywords: temperature, precipitation, water discharge, water balance, global warming
Procedia PDF Downloads 344190 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses
Authors: Neil Bar, Andrew Heweston
Abstract:
Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.Keywords: probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability
Procedia PDF Downloads 208