Search results for: data source
26438 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 1426437 Domestic Rooftop Rainwater Harvesting for Prevention of Urban Flood in the Gomti Nagar Region of Lucknow, Uttar Pradesh, India
Authors: Rajkumar Ghosh
Abstract:
Urban flooding is a common occurrence throughout Asia. Almost every city is vulnerable to urban floods in some fashion, and city people are particularly vulnerable. Pluvial and fluvial flooding are the most prominent causes of urban flooding in the Gomti Nagar region of Lucknow, Uttar Pradesh, India. The pluvial flooding is regarded to be less damaging because it is caused by heavy rainfall, Seasonal rainfall fluctuations, water flows off concrete infrastructures, blockages of the drainage system, and insufficient drainage capacity or low infiltration capacity. However, this study considers pluvial flooding in Lucknow to be a significant source of cumulative damage over time, and the risks of such events are increasing as a result of changes in ageing infrastructure, hazard exposure, rapid urbanization, massive water logging and global warming. As a result, urban flooding has emerged as a critical field of study. The popularity of analytical approaches to project the spatial extent of flood dangers has skyrocketed. To address future urban flood resilience, more effort is needed to enhance both hydrodynamic models and analytical tools to simulate risks under present and forecast conditions. Proper urban planning with drainage system and ample space for high infiltration capacity are required to reduce urban flooding. A better India with no urban flooding is a pipe dream that can be realized by putting household rooftop rainwater collection systems in every structure. According to the current study, domestic RTRWHs are strongly recommended as an alternative source of water, as well as to prevent surface runoff and urban floods in this region of Lucknow, urban areas of India.Keywords: rooftop rainwater harvesting, urban flood, pluvial flooding, fluvial flooding
Procedia PDF Downloads 8526436 Improvement of the Traditional Techniques of Artistic Casting through the Development of Open Source 3D Printing Technologies Based on Digital Ultraviolet Light Processing
Authors: Drago Diaz Aleman, Jose Luis Saorin Perez, Cecile Meier, Itahisa Perez Conesa, Jorge De La Torre Cantero
Abstract:
Traditional manufacturing techniques used in artistic contexts compete with highly productive and efficient industrial procedures. The craft techniques and associated business models tend to disappear under the pressure of the appearance of mass-produced products that compete in all niche markets, including those traditionally reserved for the work of art. The surplus value derived from the prestige of the author, the exclusivity of the product or the mastery of the artist, do not seem to be sufficient reasons to preserve this productive model. In the last years, the adoption of open source digital manufacturing technologies in small art workshops can favor their permanence by assuming great advantages such as easy accessibility, low cost, and free modification, adapting to specific needs of each workshop. It is possible to use pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) in the procedures of artistic casting. Models printed by PLA are limited to approximate minimum sizes of 3 cm, and optimal layer height resolution is 0.1 mm. Due to these limitations, it is not the most suitable technology for artistic casting processes of smaller pieces. An alternative to solve size limitation, are printers from the type (SLS) "selective sintering by laser". And other possibility is a laser hardens, by layers, metal powder and called DMLS (Direct Metal Laser Sintering). However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. The low-cost DLP (Digital Light Processing) type printers can offer high resolutions for a reasonable cost (around 0.02 mm on the Z axis and 0.04 mm on the X and Y axes), and can print models with castable resins that allow the subsequent direct artistic casting in precious metals or their adaptation to processes such as electroforming. In this work, the design of a DLP 3D printer is detailed, using backlit LCD screens with ultraviolet light. Its development is totally "open source" and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. The CAD files of its components can be manufactured in low-cost FDM 3D printers. The result is less than 500 Euros, high resolution and open-design with free access that allows not only its manufacture but also its improvement. In future works, we intend to carry out different comparative analyzes, which allow us to accurately estimate the print quality, as well as the real cost of the artistic works made with it.Keywords: traditional artistic techniques, DLP 3D printer, artistic casting, electroforming
Procedia PDF Downloads 14226435 Screening and Improved Production of an Extracellular β-Fructofuranosidase from Bacillus Sp
Authors: Lynette Lincoln, Sunil S. More
Abstract:
With the rising demand of sugar used today, it is proposed that world sugar is expected to escalate up to 203 million tonnes by 2021. Hydrolysis of sucrose (table sugar) into glucose and fructose equimolar mixture is catalyzed by β-D-fructofuranoside fructohydrolase (EC 3.2.1.26), commonly called as invertase. For fluid filled center in chocolates, preparation of artificial honey, as a sweetener and especially to ensure that food stuffs remain fresh, moist and soft for longer spans invertase is applied widely and is extensively being used. From an industrial perspective, properties such as increased solubility, osmotic pressure and prevention of crystallization of sugar in food products are highly desired. Screening for invertase does not involve plate assay/qualitative test to determine the enzyme production. In this study, we use a three-step screening strategy for identification of a novel bacterial isolate from soil which is positive for invertase production. The primary step was serial dilution of soil collected from sugarcane fields (black soil, Maddur region of Mandya district, Karnataka, India) was grown on a Czapek-Dox medium (pH 5.0) containing sucrose as the sole C-source. Only colonies with the capability to utilize/breakdown sucrose exhibited growth. Bacterial isolates released invertase in order to take up sucrose, splitting the disaccharide into simple sugars. Secondly, invertase activity was determined from cell free extract by measuring the glucose released in the medium at 540 nm. Morphological observation of the most potent bacteria was examined by several identification tests using Bergey’s manual, which enabled us to know the genus of the isolate to be Bacillus. Furthermore, this potent bacterial colony was subjected to 16S rDNA PCR amplification and a single discrete PCR amplicon band of 1500 bp was observed. The 16S rDNA sequence was used to carry out BLAST alignment search tool of NCBI Genbank database to obtain maximum identity score of sequence. Molecular sequencing and identification was performed by Xcelris Labs Ltd. (Ahmedabad, India). The colony was identified as Bacillus sp. BAB-3434, indicating to be the first novel strain for extracellular invertase production. Molasses, a by-product of the sugarcane industry is a dark viscous liquid obtained upon crystallization of sugar. An enhanced invertase production and optimization studies were carried out by one-factor-at-a-time approach. Crucial parameters such as time course (24 h), pH (6.0), temperature (45 °C), inoculum size (2% v/v), N-source (yeast extract, 0.2% w/v) and C-source (molasses, 4% v/v) were found to be optimum demonstrating an increased yield. The findings of this study reveal a simple screening method of an extracellular invertase from a rapidly growing Bacillus sp., and selection of best factors that elevate enzyme activity especially utilization of molasses which served as an ideal substrate and also as C-source, results in a cost-effective production under submerged conditions. The invert mixture could be a replacement for table sugar which is an economic advantage and reduce the tedious work of sugar growers. On-going studies involve purification of extracellular invertase and determination of transfructosylating activity as at high concentration of sucrose, invertase produces fructooligosaccharides (FOS) which possesses probiotic properties.Keywords: Bacillus sp., invertase, molasses, screening, submerged fermentation
Procedia PDF Downloads 23126434 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 13026433 Automatic Detection of Traffic Stop Locations Using GPS Data
Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell
Abstract:
Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data
Procedia PDF Downloads 27526432 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 24026431 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets
Authors: Toka M. Abufarag
Abstract:
This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo
Procedia PDF Downloads 12526430 Study of the Biochemical Properties of the Protease Coagulant Milk Extracted from Sunflower Cake: Manufacturing Test of Cheeses Uncooked Dough Press and Analysis of Sensory Properties
Authors: Kahlouche Amal, Touzene F. Zohra, Betatache Fatihaet Nouani Abdelouahab
Abstract:
The development of the world production of the cheese these last decades, as well as agents' greater request cheap coagulants, accentuated the search for new surrogates of the rennet. What about the interest to explore the vegetable biodiversity, the source well cheap of many naturals metabolites that the scientists today praise it (thistle, latex of fig tree, Cardoon, seeds of melon). Indeed, a big interest is concerned the search for surrogates of vegetable origin. The objective of the study is to show the possibility of extracting a protease coagulant the milk from the cake of Sunflower, available raw material and the potential source of surrogates of rennet. so, the determination of the proteolytic activity of raw extracts, the purification, the elimination of the pigments of tint of the enzymatic preparations, a better knowledge of the coagulative properties through study of the effect of certain factors (temperature, pH, concentration in CaCl2) are so many factors which contribute to value milk particularly those produced by the small ruminants of the Algerian dairy exploitations. Otherwise, extracts coagulants of vegetable origin allowed today to value traditional, in addition, although the extract coagulants of vegetable origin made it possible today to develop traditional cheeses whose Iberian peninsula is the promoter, but the test of 'pressed paste not cooked' cheese manufacturing led to the semi-scale pilot; and that, by using the enzymatic extract of sunflower (Helianthus annus) which gave satisfactory results as well to the level of outputs as on the sensory level,which, statistically,did not give any significant difference between studied cheeses. These results confirm the possibility of use of this coagulase as a substitute of rennet commercial on an industrial scale.Keywords: characterization, cheese, Rennet, sunflower
Procedia PDF Downloads 35126429 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development
Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez
Abstract:
Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture
Procedia PDF Downloads 30126428 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle
Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh
Abstract:
India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.Keywords: drinking water resources, Ganga alluvial plain, india, mercury
Procedia PDF Downloads 14526427 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter
Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai
Abstract:
A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS
Procedia PDF Downloads 8626426 Preparation and Sealing of Polymer Microchannels Using EB Lithography and Laser Welding
Authors: Ian Jones, Jonathan Griffiths
Abstract:
Laser welding offers the potential for making very precise joints in plastics products, both in terms of the joint location and the amount of heating applied. These methods have allowed the production of complex products such as microfluidic devices where channels and structure resolution below 100 µm is regularly used. However, to date, the dimension of welds made using lasers has been limited by the focus spot size that is achievable from the laser source. Theoretically, the minimum spot size possible from a laser is comparable to the wavelength of the radiation emitted. Practically, with reasonable focal length optics the spot size achievable is a few factors larger than this, and the melt zone in a plastics weld is larger again than this. The narrowest welds feasible to date have therefore been 10-20 µm wide using a near-infrared laser source. The aim of this work was to prepare laser absorber tracks and channels less than 10 µm wide in PMMA thermoplastic using EB lithography followed by sealing of channels using laser welding to carry out welds with widths of the order of 1 µm, below the resolution limit of the near-infrared laser used. Welded joints with a width of 1 µm have been achieved as well as channels with a width of 5 µm. The procedure was based on the principle of transmission laser welding using a thin coating of infrared absorbent material at the joint interface. The coating was patterned using electron-beam lithography to obtain the required resolution in a reproducible manner and that resolution was retained after the transmission laser welding process. The joint strength was ratified using larger scale samples. The results demonstrate that plastics products could be made with a high density of structure with resolution below 1 um, and that welding can be applied without excessively heating regions beyond the weld lines. This may be applied to smaller scale sensor and analysis chips, micro-bio and chemical reactors and to microelectronic packaging.Keywords: microchannels, polymer, EB lithography, laser welding
Procedia PDF Downloads 40226425 A Named Data Networking Stack for Contiki-NG-OS
Authors: Sedat Bilgili, Alper K. Demir
Abstract:
The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system
Procedia PDF Downloads 17126424 Numerical Analysis of a Pilot Solar Chimney Power Plant
Authors: Ehsan Gholamalizadeh, Jae Dong Chung
Abstract:
Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant
Procedia PDF Downloads 26226423 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer
Procedia PDF Downloads 14526422 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide
Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu
Abstract:
This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide
Procedia PDF Downloads 23726421 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model
Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam
Abstract:
Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.Keywords: COPERT Model, emission estimation, PM10, vehicular emission
Procedia PDF Downloads 26226420 Potential Positive Impacts of Online Communities on Mental Health of Women Who Have Experienced Miscarriage
Authors: Mahtab Talafian
Abstract:
With the advent of technology over the last decades, participation in online communities and discussion forums has become increasingly popular. Many studies have been done on the negative role of the online world on human beings’ psychological well-being and mental health, while relatively less attention has been given to the potentially positive role of technology in promoting mental health. Miscarriage is a common and emotionally challenging experience for women, and online communities seem to be a potential source of support for them. This study aimed to firstly find the most common types of support communicated in online communities of women who have miscarried and, secondly, investigate if there is a relationship between participation in online communities and mental health outcomes after miscarriage. In this study, three research methodologies, including content analysis, survey and interview, were employed to answer the research questions. With the analysis of 158 messages, including postings and comments in the online community of Mumsnet, it can be concluded that informational support and emotional support are the most prevalent types of support women share in the online community. Analysis of data gathered from the survey of 19 women who had experienced a miscarriage during the last year showed that participation in online communities makes a significant improvement in their mental health. Interviews also highlighted the helpful role of the online community in relieving emotional disorders, such as trauma, hopelessness, loneliness, stress, depression and anxiety about miscarriage.Keywords: mental health, miscarriage, online community, support
Procedia PDF Downloads 7326419 Location Privacy Preservation of Vehicle Data In Internet of Vehicles
Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman
Abstract:
Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme
Procedia PDF Downloads 17926418 Development of a Plant-Based Dietary Supplement to Address Critical Micronutrient Needs of Women of Child-Bearing Age in Europe
Authors: Sara D. Garduno-Diaz, Ramona Milcheva, Chanyu Xu
Abstract:
Women’s reproductive stages (pre-pregnancy, pregnancy, and lactation) represent a time of higher micronutrient needs. With a healthy food selection as the first path of choice to cover these increased needs, tandem micronutrient supplementation is often required. Because pregnancy and lactation should be treated with care, all supplements consumed should be of quality ingredients and manufactured through controlled processes. This work describes the process followed for the development of plant-based multiple micronutrient supplements aimed at addressing the growing demand for natural ingredients of non-animal origin. A list of key nutrients for inclusion was prioritized, followed by the identification and selection of qualified raw ingredient providers. Nutrient absorption into the food matrix was carried out through natural processes. The outcome is a new line of products meeting the set criteria of being gluten and lactose-free, suitable for vegans/vegetarians, and without artificial conservatives. In addition, each product provides the consumer with 10 vitamins, 6 inorganic nutrients, 1 source of essential fatty acids, and 1 source of phytonutrients each (maca, moringa, and chlorella). Each raw material, as well as the final product, was submitted to microbiological control three-fold (in-house and external). The final micronutrient mix was then tested for human factor contamination, pesticides, total aerobic microbial count, total yeast count, and total mold count. The product was created with the aim of meeting product standards for the European Union, as well as specific requirements for the German market in the food and pharma fields. The results presented here reach the point of introduction of the newly developed product to the market, with acceptability and effectiveness results to be published at a later date.Keywords: fertility, lactation, organic, pregnancy, vegetarian
Procedia PDF Downloads 14626417 Production and Purification of Pectinase by Aspergillus Niger
Authors: M. Umar Dahot, G. S. Mangrio
Abstract:
In this study Agro-industrial waste was used as a carbon source, which is a low cost substrate. Along with this, various sugars and molasses of 2.5% and 5% were investigated as substrate/carbon source for the growth of A.niger and Pectinase production. Different nitrogen sources were also used. An overview of results obtained show that 5% sucrose, 5% molasses and 0.4% (NH4)2SO4 were found the best carbon and nitrogen sources for the production of pectinase by A. niger. The maximum production of pectinase (26.87units/ml) was observed at pH 6.0 after 72 hrs incubation. The optimum temperature for the maximum production of pectinase was achieved at 35ºC when maximum production of pectinase was obtained as 28.25Units/ml.Pectinase enzyme was purified with ammonium sulphate precipitation and dialyzed sample was finally applied on gel filtration chromatography (Sephadex G-100) and Ion Exchange DEAE A-50. The enzyme was purified 2.5 fold by gel chromatography on Sephadex G-100 and Four fractions were obtained, Fraction 1, 2, 4 showed single band while Fraction -3 showed multiple bands on SDS Page electrophoresis. Fraction -3 was pooled, dialyzed and separated on Sephdex A-50 and two fractions 3a and 3b showed single band. The molecular weights of the purified fractions were detected in the range of 33000 ± 2000 and 38000± 2000 Daltons. The purified enzyme was specifically most active with pure pectin, while pectin, Lemon pectin and orange peel given lower activity as compared to (control). The optimum pH and temperature for pectinase activity was found between pH 5.0 and 6.0 and 40°- 50°C, respectively. The enzyme was stable over the pH range 3.0-8.0. The thermostability of was determined and it was observed that the pectinase activity is heat stable and retains activity more than 40% when incubated at 90°C for 10 minutes. The pectinase activity of F3a and F3b was increased with different metal ions. The Pectinase activity was stimulated in the presence of CaCl2 up to 10-30%. ZnSO4, MnSO4 and Mg SO4 showed higher activity in fractions F3a and F3b, which indicates that the pectinase belongs to metalo-enzymes. It is concluded that A. niger is capable to produce pH stable and thermostable pectinase, which can be used for industrial purposes.Keywords: pectinase, a. niger, production, purification, characterization
Procedia PDF Downloads 41326416 Experimental Study of Boost Converter Based PV Energy System
Authors: T. Abdelkrim, K. Ben Seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa
Abstract:
This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC micro controller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.Keywords: boost converter, microcontroller, photovoltaic power generation, shading cells
Procedia PDF Downloads 87826415 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price
Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin
Abstract:
Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer
Procedia PDF Downloads 47626414 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 9326413 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics
Procedia PDF Downloads 24326412 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining
Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong
Abstract:
This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery
Procedia PDF Downloads 40426411 The Importance of Knowledge Innovation for External Audit on Anti-Corruption
Authors: Adel M. Qatawneh
Abstract:
This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange
Procedia PDF Downloads 46526410 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 12326409 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks
Procedia PDF Downloads 146