Search results for: clustering algorithms
602 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 420601 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 153600 Interval Bilevel Linear Fractional Programming
Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi
Abstract:
The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients
Procedia PDF Downloads 446599 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 467598 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space
Authors: Nanjiang Chen
Abstract:
In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experi-ence of space. Addressing these gaps, this paper introduces a distinct continuous visibility algorithm, a leap in measuring urban spaces from a human-centric per-spective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this tech-nique allows for a continuous range of visibility assessment, closely mirroring hu-man visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Bei-jing's urban setting. Its key distinction lies in its potential to benefit a broad spec-trum of stakeholders, ranging from urban developers to public policymakers, aid-ing in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.Keywords: visual openness, spatial continuity, ray-tracing algorithms, urban computation
Procedia PDF Downloads 46597 The Searching Artificial Intelligence: Neural Evidence on Consumers' Less Aversion to Algorithm-Recommended Search Product
Authors: Zhaohan Xie, Yining Yu, Mingliang Chen
Abstract:
As research has shown a convergent tendency for aversion to AI recommendation, it is imperative to find a way to promote AI usage and better harness the technology. In the context of e-commerce, this study has found evidence that people show less avoidance of algorithms when recommending search products compared to experience products. This is due to people’s different attribution of mind to AI versus humans, as suggested by mind perception theory. While people hold the belief that an algorithm owns sufficient capability to think and calculate, which makes it competent to evaluate search product attributes that can be obtained before actual use, they doubt its capability to sense and feel, which is essential for evaluating experience product attributes that must be assessed after experience in person. The result of the behavioral investigation (Study 1, N=112) validated that consumers show low purchase intention to experience products recommended by AI. Further consumer neuroscience study (Study 2, N=26) using Event-related potential (ERP) showed that consumers have a higher level of cognitive conflict when faced with AI recommended experience product as reflected by larger N2 component, while the effect disappears for search product. This research has implications for the effective employment of AI recommenders, and it extends the literature on e-commerce and marketing communication.Keywords: algorithm recommendation, consumer behavior, e-commerce, event-related potential, experience product, search product
Procedia PDF Downloads 153596 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations
Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut
Abstract:
The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction
Procedia PDF Downloads 70595 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power
Procedia PDF Downloads 375594 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 163593 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 235592 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers
Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion
Abstract:
Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law
Procedia PDF Downloads 151591 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 135590 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 8589 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform
Authors: David Jurado, Carlos Ávila
Abstract:
Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis
Procedia PDF Downloads 83588 The Relationship between Violence against Women in the Family and Common Mental Disorders in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study
Authors: Abigail Bentley, Audrey Prost, Nayreen Daruwalla, Apoorwa Gupta, David Osrin
Abstract:
BACKGROUND: Intimate partner violence (IPV) can impact a woman’s physical, reproductive and mental health, including common mental disorders such as anxiety and depression. However, people other than an intimate partner may also perpetrate violence against women in the family, particularly in India. This study aims to investigate the relationship between experiences of violence perpetrated by the husband and other members of the wider household and symptoms of common mental disorders in women residing in informal settlement (slum) areas of Mumbai. METHODS: Experiences of violence were assessed through a detailed cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points in the woman’s life and the main perpetrator of each act. Symptoms of common mental disorders were assessed using the 12-item General Health Questionnaire (GHQ-12). The GHQ-12 scores were divided into four groups and the relationship between experiences of each type of violence in the last 12 months and GHQ-12 score group was analyzed using ordinal logistic regression, adjusted for the woman’s age and clustering. RESULTS: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 7 years of education and had been married 9 years. 88% were Muslim and 47% lived in joint and 53% in nuclear families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 23% physical, 12% sexual). 7% had a high GHQ-12 score (6 or above). For violence experiences in the last 12 months, the odds of being in the highest GHQ-12 score group versus the lower groups combined were 13.1 for emotional violence, 6.5 for economic, 5.7 for physical and 6.3 for sexual (p<0.001 for all outcomes). DISCUSSION: The high level of violence reported across the lifetime could be due to the detailed assessment of violent acts at multiple time points and the inclusion of perpetrators within the family other than the husband. Each type of violence was associated with greater odds of a higher GHQ-12 score and therefore more symptoms of common mental disorders. Emotional violence was far more strongly associated with symptoms of common mental disorders than physical or sexual violence. However, it is not possible to attribute causal directionality to the association. Further work to investigate the relationship between differing severity of violence experiences and women’s mental health and the components of emotional violence that make it so strongly associated with symptoms of common mental disorders would be beneficial.Keywords: common mental disorders, family violence, India, informal settlements, mental health, violence against women
Procedia PDF Downloads 359587 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University
Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang
Abstract:
Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University
Procedia PDF Downloads 315586 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 107585 Hardware in the Loop Platform for Virtual Commissioning: Case Study of a Hydraulic-Press Model Simulated in Real-Time
Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Ana Maria Macarulla
Abstract:
Hydraulic-press commissioning consumes a great amount of man-hours, due to the fact that it takes place several miles away from where it has been designed. This factor became exacerbated due to control designers’ lack of knowledge about which will be the final controller gains before they start working with it. Virtual commissioning has been postulated as an optimal solution to deal with this lack of knowledge. Here, a case study is presented in which a controller is set up against a real-time model based on a hydraulic-press. The press model is designed following manufacturer specifications and it is embedded in a real-time simulator. This methodology ensures that the model achieves similar responses as the real machine that would be placed on the industry. A deterministic communication protocol is in charge of the bidirectional information transmission between the real-time model and the controller. This platform allows the engineer to test and verify the final control responses with exactly the same hardware that is going to be installed in the hydraulic-press, in other words, realize a virtual commissioning of the electro-hydraulic actuator. The Hardware in the Loop (HiL) platform validates in laboratory conditions and harmless for the machine the control algorithms designed, which allows embedding them afterwards in the industrial environment without further modifications.Keywords: deterministic communication protocol, electro-hydraulic actuator, hardware in the loop, real-time, virtual commissioning
Procedia PDF Downloads 142584 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty
Procedia PDF Downloads 380583 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance
Procedia PDF Downloads 265582 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 417581 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 56580 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data
Authors: M. Kharrat, G. Moreau, Z. Aboura
Abstract:
The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition
Procedia PDF Downloads 155579 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior
Authors: Juliana A. Knocikova
Abstract:
Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex
Procedia PDF Downloads 300578 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells
Authors: Jae-Hyeon Kim, Michael Lee
Abstract:
Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy
Procedia PDF Downloads 325577 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance
Authors: Loai AbdAllah, Mahmoud Kaiyal
Abstract:
Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.Keywords: missing values, incomplete data, distance, incomplete diabetes data
Procedia PDF Downloads 225576 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 254575 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order
Authors: Alvaro Javier Ortega
Abstract:
A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.Keywords: employees, genetic algorithm, industry management, workforce
Procedia PDF Downloads 168574 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 132573 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 125