Search results for: array signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5667

Search results for: array signal processing

3747 Online Assessment in the Ligh of Resiliance

Authors: Renáta Nagy, Alexandra Csongor, Vilmos Warta

Abstract:

The presentation aims at eliciting insight into the results of ongoing research regarding evolving trends and attitudes towards online assessment of English and other languages. The focus pinpoints online as one of the most trending forms available during the global pandemic. The study was first initiated in 2019 in which its main target was to reveal the intriguing question of students’ and assessors’ attitudes towards online assessment. The research questions the attitudes towards the latest trends, possible online task types, and their advantages and disadvantages through an in-depth experimental process currently undergoing implementation. Material and methods include surveys, needs and wants analysis, and thorough investigations regarding candidates’ and assessors’ attitudes towards online tests in the field of languages. Over 400 respondents from more than 28 countries participated in the survey, which gives us an international and intercultural insight into how students with different cultural and educational background deal with the evolving online world. The results show the pandemic’s impact, which brought the slumbering online world of assessing roaring alive, fully operational, and now bears phenomenal relevance in today’s global education. Undeniably, the results can be used as a perspective in a vast array of contents. The survey hypothesized the generation of the 21st century expect everything readily available online, however, questions whether they are ready for this challenge are lurking in the background.

Keywords: assessment, english, intercultural, international, online, testing

Procedia PDF Downloads 79
3746 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 112
3745 Contribution of Spatial Teledetection to the Geological Mapping of the Imiter Buttonhole: Application to the Mineralized Structures of the Principal Corps B3 (CPB3) of the Imiter Mine (Anti-atlas, Morocco)

Authors: Bouayachi Ali, Alikouss Saida, Baroudi Zouhir, Zerhouni Youssef, Zouhair Mohammed, El Idrissi Assia, Essalhi Mourad

Abstract:

The world-class Imiter silver deposit is located on the northern flank of the Precambrian Imiter buttonhole. This deposit is formed by epithermal veins hosted in the sandstone-pelite formations of the lower complex and in the basic conglomerates of the upper complex, these veins are controlled by a regional scale fault cluster, oriented N70°E to N90°E. The present work on the contribution of remote sensing on the geological mapping of the Imiter buttonhole and application to the mineralized structures of the Principal Corps B3. Mapping on satellite images is a very important tool in mineral prospecting. It allows the localization of the zones of interest in order to orientate the field missions by helping the localization of the major structures which facilitates the interpretation, the programming and the orientation of the mining works. The predictive map also allows for the correction of field mapping work, especially the direction and dimensions of structures such as dykes, corridors or scrapings. The use of a series of processing such as SAM, PCA, MNF and unsupervised and supervised classification on a Landsat 8 satellite image of the study area allowed us to highlight the main facies of the Imite area. To improve the exploration research, we used another processing that allows to realize a spatial distribution of the alteration mineral indices, and the application of several filters on the different bands to have lineament maps.

Keywords: principal corps B3, teledetection, Landsat 8, Imiter II, silver mineralization, lineaments

Procedia PDF Downloads 95
3744 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)

Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang

Abstract:

The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.

Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes

Procedia PDF Downloads 50
3743 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy

Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav

Abstract:

In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining

Keywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining

Procedia PDF Downloads 353
3742 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)

Authors: Jiraporn Rojtinnakorn

Abstract:

ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I trans-membrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish.

Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor

Procedia PDF Downloads 226
3741 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 137
3740 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 95
3739 DNA-Based Analysis of Gut Content of Zygoribatula sp (Acari: Oribatida) and Scheloribates sp (Acari: Oribatida), under the Canopy of Prosopis Laevigata, in a Semiarid Land

Authors: Daniel Isaac Sanchez Chavez, Salvador Rodríguez Zaragoza, Patricia Velez Aguilar

Abstract:

In arid and semi-arid regions, plants are essential in the functional activity and productivity, modifying the microclimatic conditions of their environment, which allows many organisms to grow under them. Within these organisms, oribatid mites play a key role in reintegrating nutrients into the soil through the consumption of soil fungi. However, oribatid mites feed on a vast array of fungal species, which is likely to have strong impacts on their population dynamics and their environment. So, in this study, the aim was to determine the gut content of the abundant oribatid mites Zygoribatula sp and Scheloribates sp, under the canopy of the bush P. laevigata in a semi-arid zone through DNA-based analysis. The results showed the presence in the gut of both mites of different fungal taxa. Fungi, such as Aspergillus sp and Mortierella sp, probably served as a food despite the production of deterrent compounds or structures from both fungal species. Saccharomyces sp might serve as well as a food source; however, it might be part of their microbial endosymbionts. On the other hand, the presence of Beauveria sp indicates a probable pathogenicity interaction, instead of fungal consumption, since this fungus is known to be entomopathogenic. Finally, the results might indicate a feeding preference to certain soil fungi according to diverse features from both taxa.

Keywords: microenvironment, endosymbionts, Oribatida, fungi

Procedia PDF Downloads 142
3738 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern

Authors: Shutchapol Chopvitayakun

Abstract:

Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.

Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)

Procedia PDF Downloads 315
3737 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
3736 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)

Authors: Refal Hussain, Saifuddin M. Nomanbhay

Abstract:

Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.

Keywords: bioethanol, Escherichia coli, immobilization, optimization

Procedia PDF Downloads 653
3735 Lightweight Hardware Firewall for Embedded System Based on Bus Transactions

Authors: Ziyuan Wu, Yulong Jia, Xiang Zhang, Wanting Zhou, Lei Li

Abstract:

The Internet of Things (IoT) is a rapidly evolving field involving a large number of interconnected embedded devices. In the design of embedded System-on-Chip (SoC), the key issues are power consumption, performance, and security. However, the easy-to-implement software and untrustworthy third-party IP cores may threaten the safety of hardware assets. Considering that illegal access and malicious attacks against SoC resources pass through the bus that integrates IPs, we propose a Lightweight Hardware Firewall (LHF) to protect SoC, which monitors and disallows the offending bus transactions based on physical addresses. Furthermore, under the LHF architecture, this paper refines two types of firewalls: Destination Hardware Firewall (DHF) and Source Hardware Firewall (SHF). The former is oriented to fine-grained detection and configuration, whose core technology is based on the method of dynamic grading units. In addition, we design the SHF based on static entries to achieve lightweight. Finally, we evaluate the hardware consumption of the proposed method by both Field-Programmable Gate Array (FPGA) and IC. Compared with the exciting efforts, LHF introduces a bus latency of zero clock cycles for every read or write transaction implemented on Xilinx Kintex-7 FPGAs. Meanwhile, the DC synthesis results based on TSMC 90nm show that the area is reduced by about 25% compared with the previous method.

Keywords: IoT, security, SoC, bus architecture, lightweight hardware firewall, FPGA

Procedia PDF Downloads 61
3734 Methotrexate Associated Skin Cancer: A Signal Review of Pharmacovigilance Center

Authors: Abdulaziz Alakeel, Abdulrahman Alomair, Mohammed Fouda

Abstract:

Introduction: Methotrexate (MTX) is an antimetabolite used to treat multiple conditions, including neoplastic diseases, severe psoriasis, and rheumatoid arthritis. Skin cancer is the out-of-control growth of abnormal cells in the epidermis, the outermost skin layer, caused by unrepaired DNA damage that triggers mutations. These mutations lead the skin cells to multiply rapidly and form malignant tumors. The aim of this review is to evaluate the risk of skin cancer associated with the use of methotrexate and to suggest regulatory recommendations if required. Methodology: Signal Detection team at Saudi Food and Drug Authority (SFDA) performed a safety review using National Pharmacovigilance Center (NPC) database as well as the World Health Organization (WHO) VigiBase, alongside with literature screening to retrieve related information for assessing the causality between skin cancer and methotrexate. The search conducted in July 2020. Results: Four published articles support the association seen while searching in literature, a recent randomized control trial published in 2020 revealed a statistically significant increase in skin cancer among MTX users. Another study mentioned methotrexate increases the risk of non-melanoma skin cancer when used in combination with immunosuppressant and biologic agents. In addition, the incidence of melanoma for methotrexate users was 3-fold more than the general population in a cohort study of rheumatoid arthritis patients. The last article estimated the risk of cutaneous malignant melanoma (CMM) in a cohort study shows a statistically significant risk increase for CMM was observed in MTX exposed patients. The WHO database (VigiBase) searched for individual case safety reports (ICSRs) reported for “Skin Cancer” and 'Methotrexate' use, which yielded 121 ICSRs. The initial review revealed that 106 cases are insufficiently documented for proper medical assessment. However, the remaining fifteen cases have extensively evaluated by applying the WHO criteria of causality assessment. As a result, 30 percent of the cases showed that MTX could possibly cause skin cancer; five cases provide unlikely association and five un-assessable cases due to lack of information. The Saudi NPC database searched to retrieve any reported cases for the combined terms methotrexate/skin cancer; however, no local cases reported up to date. The data mining of the observed and the expected reporting rate for drug/adverse drug reaction pair is estimated using information component (IC), a tool developed by the WHO Uppsala Monitoring Centre to measure the reporting ratio. Positive IC reflects higher statistical association, while negative values translated as a less statistical association, considering the null value equal to zero. Results showed that a combination of 'Methotrexate' and 'Skin cancer' observed more than expected when compared to other medications in the WHO database (IC value is 1.2). Conclusion: The weighted cumulative pieces of evidence identified from global cases, data mining, and published literature are sufficient to support a causal association between the risk of skin cancer and methotrexate. Therefore, health care professionals should be aware of this possible risk and may consider monitoring any signs or symptoms of skin cancer in patients treated with methotrexate.

Keywords: methotrexate, skin cancer, signal detection, pharmacovigilance

Procedia PDF Downloads 114
3733 ALEF: An Enhanced Approach to Arabic-English Bilingual Translation

Authors: Abdul Muqsit Abbasi, Ibrahim Chhipa, Asad Anwer, Saad Farooq, Hassan Berry, Sonu Kumar, Sundar Ali, Muhammad Owais Mahmood, Areeb Ur Rehman, Bahram Baloch

Abstract:

Accurate translation between structurally diverse languages, such as Arabic and English, presents a critical challenge in natural language processing due to significant linguistic and cultural differences. This paper investigates the effectiveness of Facebook’s mBART model, fine-tuned specifically for sequence-tosequence (seq2seq) translation tasks between Arabic and English, and enhanced through advanced refinement techniques. Our approach leverages the Alef Dataset, a meticulously curated parallel corpus spanning various domains to capture the linguistic richness, nuances, and contextual accuracy essential for high-quality translation. We further refine the model’s output using advanced language models such as GPT-3.5 and GPT-4, which improve fluency, coherence, and correct grammatical errors in translated texts. The fine-tuned model demonstrates substantial improvements, achieving a BLEU score of 38.97, METEOR score of 58.11, and TER score of 56.33, surpassing widely used systems such as Google Translate. These results underscore the potential of mBART, combined with refinement strategies, to bridge the translation gap between Arabic and English, providing a reliable, context-aware machine translation solution that is robust across diverse linguistic contexts.

Keywords: natural language processing, machine translation, fine-tuning, Arabic-English translation, transformer models, seq2seq translation, translation evaluation metrics, cross-linguistic communication

Procedia PDF Downloads 7
3732 X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling

Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche

Abstract:

High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.

Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations

Procedia PDF Downloads 437
3731 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview

Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan

Abstract:

Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.

Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator

Procedia PDF Downloads 482
3730 Fast Terminal Sliding Mode Controller For Quadrotor UAV

Authors: Vahid Tabrizi, Reza GHasemi, Ahmadreza Vali

Abstract:

This paper presents robust nonlinear control law for a quadrotor UAV using fast terminal sliding mode control. Fast terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Then, in reaching phase for removing chattering and producing smooth control signal, continuous approximation idea is used. Simulation results show that the proposed algorithm is robust against parameter uncertainty and has better performance than conventional sliding mode for controlling a quadrotor UAV.

Keywords: quadrotor UAV, fast terminal sliding mode, second order sliding mode t

Procedia PDF Downloads 547
3729 Vehicle Speed Estimation Using Image Processing

Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha

Abstract:

In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.

Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision

Procedia PDF Downloads 84
3728 Development of Imprinting and Replica Molding of Soft Mold Curved Surface

Authors: Yung-Jin Weng, Chia-Chi Chang, Chun-Yu Tsai

Abstract:

This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method.

Keywords: soft mold, magnetic, microstructure, curved surface

Procedia PDF Downloads 326
3727 The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation

Authors: Yan Pang, Xiang Wang, Zhaomiao Liu

Abstract:

Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case.

Keywords: droplet generation, droplet size, flow flied, forced fluctuation

Procedia PDF Downloads 282
3726 Isolation and Selection of Strains Perspective for Sewage Sludge Processing

Authors: A. Zh. Aupova, A. Ulankyzy, A. Sarsenova, A. Kussayin, Sh. Turarbek, N. Moldagulova, A. Kurmanbayev

Abstract:

One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing.

Keywords: sewage sludge, composting, bacteria, enzymatic activity

Procedia PDF Downloads 102
3725 Exploring the Traditional Uses of Aromatic Plants in Indonesian Culture, Medicine, and Spirituality

Authors: Aida Humaira

Abstract:

Aromatic plants hold an honored place in Indonesian culture, where they are deeply intertwined with everyday customs, rituals, and ceremonies. From the fragrant herbs and spices used in cooking to the aromatic incense burned in temples and homes, aromatic plants play multifaceted roles in enhancing well-being and fostering spiritual connections. These plants are valued not only for their pleasant aromas but also for their medicinal properties and symbolic meanings. This article aims to summarize the role of aromatic plants in Indonesian traditional culture, medicine, spirituality, and how it shifted to a modern version of aromatherapy. Traditional Indonesian medicine, known as Jamu, relies heavily on aromatic plants for their therapeutic benefits. Herbalists and traditional healers use a wide array of aromatic herbs, roots, barks, and resins to treat various ailments, ranging from digestive disorders and respiratory infections to skin conditions and reproductive issues. In conclusion, aromatic plants represent a cultural treasure with multifaceted uses and significance deeply rooted in Indonesia’s tradition. From their medicinal properties to their spiritual symbolism, these plants embody the interconnection of culture, nature, and well-being. Further research and collaboration are needed to document and preserve traditional knowledge surrounding Indonesian aromatic plants and ensure their continued recognition and sustainable utilization in the face of modernization and environmental challenges.

Keywords: aromatic plants, indonesia, Jamu, traditional medicine

Procedia PDF Downloads 60
3724 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira

Abstract:

This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.

Keywords: wireless sensor networks, RSSI, Arduino, environments

Procedia PDF Downloads 619
3723 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts

Procedia PDF Downloads 129
3722 Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying

Authors: James Banda, Jupiter Simbeye, Essau Chisale, Geoffrey Kanyerere, Kings Kamtambe

Abstract:

Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content.

Keywords: diplotaxodon, Malawi, open sun drying, solar tent drying

Procedia PDF Downloads 336
3721 Design and Implementation of Collaborative Editing System Based on Physical Simulation Engine Running State

Authors: Zhang Songning, Guan Zheng, Ci Yan, Ding Gangyi

Abstract:

The application of physical simulation engines in collaborative editing systems has an important background and role. Firstly, physical simulation engines can provide real-world physical simulations, enabling users to interact and collaborate in real time in virtual environments. This provides a more intuitive and immersive experience for collaborative editing systems, allowing users to more accurately perceive and understand various elements and operations in collaborative editing. Secondly, through physical simulation engines, different users can share virtual space and perform real-time collaborative editing within it. This real-time sharing and collaborative editing method helps to synchronize information among team members and improve the efficiency of collaborative work. Through experiments, the average model transmission speed of a single person in the collaborative editing system has increased by 141.91%; the average model processing speed of a single person has increased by 134.2%; the average processing flow rate of a single person has increased by 175.19%; the overall efficiency improvement rate of a single person has increased by 150.43%. With the increase in the number of users, the overall efficiency remains stable, and the physical simulation engine running status collaborative editing system also has horizontal scalability. It is not difficult to see that the design and implementation of a collaborative editing system based on physical simulation engines not only enriches the user experience but also optimizes the effectiveness of team collaboration, providing new possibilities for collaborative work.

Keywords: physics engine, simulation technology, collaborative editing, system design, data transmission

Procedia PDF Downloads 85
3720 Surface Topography Measurement by Confocal Spectral Interferometry

Authors: A. Manallah, C. Meier

Abstract:

Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.

Keywords: confocal spectral interferometry, nondestructive testing, optical metrology, surface topography, roughness

Procedia PDF Downloads 276
3719 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
3718 Determination of Concentrated State Using Multiple EEG Channels

Authors: Tae Jin Choi, Jong Ok Kim, Sang Min Jin, Gilwon Yoon

Abstract:

Analysis of EEG brainwave provides information on mental or emotional states. One of the particular states that can have various applications in human machine interface (HMI) is concentration. 8-channel EEG signals were measured and analyzed. The concentration index was compared during resting and concentrating periods. Among eight channels, locations the frontal lobe (Fp1 and Fp2) showed a clear increase of the concentration index during concentration regardless of subjects. The rest six channels produced conflicting observations depending on subjects. At this time, it is not clear whether individual difference or how to concentrate made these results for the rest six channels. Nevertheless, it is expected that Fp1 and Fp2 are promising locations for extracting control signal for HMI applications.

Keywords: concentration, EEG, human machine interface, biophysical

Procedia PDF Downloads 482