Search results for: dispersed region growing algorithm (DRGA)
9642 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4789641 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods
Authors: Ehsan Sakhaei, Ali Taherabadi
Abstract:
In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model
Procedia PDF Downloads 5049640 Collaborative Environmental Management: A Case Study Research of Stakeholders' Collaboration in the Nigerian Oil-Producing Region
Authors: Favour Makuochukwu Orji, Yingkui Zhao
Abstract:
A myriad of environmental issues face the Nigerian industrial region, resulting from; oil and gas production, mining, manufacturing and domestic wastes. Amidst these, much effort has been directed by stakeholders in the Nigerian oil producing regions, because of the impacts of the region on the wider Nigerian economy. Research to date has suggested that collaborative environmental management could be an effective approach in managing environmental issues; but little attention has been given to the roles and practices of stakeholders in effecting a collaborative environmental management framework for the Nigerian oil-producing region. This paper produces a framework to expand and deepen knowledge relating to stakeholders aspects of collaborative roles in managing environmental issues in the Nigeria oil-producing region. The knowledge is derived from analysis of stakeholders’ practices – studied through multiple case studies using document analysis. Selected documents of key stakeholders – Nigerian government agencies, multi-national oil companies and host communities, were analyzed. Open and selective coding was employed manually during document analysis of data collected from the offices and websites of the stakeholders. The findings showed that the stakeholders have a range of roles, practices, interests, drivers and barriers regarding their collaborative roles in managing environmental issues. While they have interests for efficient resource use, compliance to standards, sharing of responsibilities, generating of new solutions, and shared objectives; there is evidence of major barriers which includes resource allocation, disjointed policy and regulation, ineffective monitoring, diverse socio- economic interests, lack of stakeholders’ commitment and limited knowledge sharing. However, host communities hold deep concerns over the collaborative roles of stakeholders for economic interests, particularly, where government agencies and multi-national oil companies are involved. With these barriers and concerns, a genuine stakeholders’ collaboration is found to be limited, and as a result, optimal environmental management practices and policies have not been successfully implemented in the Nigeria oil-producing region. A framework is produced that describes practices that characterize collaborative environmental management might be employed to satisfy the stakeholders’ interests. The framework recommends critical factors, based on the findings, which may guide a collaborative environmental management in the oil producing regions. The recommendations are designed to re-define the practices of stakeholders in managing environmental issues in the oil producing regions, not as something wholly new, but as an approach essential for implementing a sustainable environmental policy. This research outcome may clarify areas for future research as well as to contribute to industry guidance in the area of collaborative environmental management.Keywords: collaborative environmental management framework, case studies, document analysis, multinational oil companies, Nigerian oil producing regions, Nigerian government agencies, stakeholders analysis
Procedia PDF Downloads 1749639 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 3249638 An Exploratory Study of the Ghanaian Music Industry: Its Impacts on the Economy and Society
Authors: Ralph Nyadu-Addo, Francis Matambalya, Utz Dornberger
Abstract:
The global music industry is a multi-billion dollar sector. The potential of Africa’s music industry is widely recognised in the socio-economic development milieu. It has impacted positively on several sectors including most especially the tourism, media and information, communication technology (ICT) among others. It is becoming increasingly clear that even in Africa (as demonstrated in Nigeria) that in addition to its intrinsic value, the sector has significant economic returns. UNCTAD observed, the creative industries offer some of the best prospects for high growth in least developed countries. The statistics from Africa may be far lower than similar sectors in developed countries but it goes to give further credence to several UNCTAD publications which say the creative industry is under researched and its potential under-estimated but holds the key to its rapid development The emerging creative economy (music in particular) has become a leading component of economic growth, employment, trade, innovation, and social cohesion in many countries. In line with these developments, the Ghana government recognizes the potential that the Creative Industries have to shape and reinforce Ghana’s economic growth. Creative sectors, particularly music, tend to rely less on sophisticated infrastructure or capital-intensive investment. Potential is particularly abundant in Africa, where musical creativity is rich, diverse, well-loved, and constantly evolving while drawing on strong traditions. The development of a popular music industry thus represents low-hanging fruit for most African economies says the World Bank. As we shift towards economic diversification using the creative industry, value is increasingly created at the intersection of arts, business and technology. Cultural and creative entrepreneurs are leading this trend. It is one of the areas where value is captured within the country as emerging trends have shown in Nigeria and Ghana among others. Yet, evidence shows that the potential of the cultural and creative sectors remains largely untapped. Furthermore, its socio-economic impact remains under-researched in many developing countries and its dynamics unknown. Despite its huge influence on music repertoire across the globe, most countries in Africa have not historically been significant markets for the international music industry. Today, that is beginning to change. Generally, reliable and adequate literature about music in the sub-region is difficult to obtain. The growing interests in academia and business cycles about a reliable data on the growing music industry in developing countries have called for an urgent need to undertake this research. Research questions: i. Who are the major stakeholders in the music value chain in Ghana? ii. How much of value is captured domestically iii. What is the economic impact of the Ghanaian music industry iv. How has the advent of ICT (internet) impacted on the music landscape? Research sources will be mainly through interviews of major stakeholders, baseline study of the industry by KPMG and content analysis of related newspapers and magazines.Keywords: economic impact, information communications technology (ICT), music-industry, value chain
Procedia PDF Downloads 2949637 Learning Grammars for Detection of Disaster-Related Micro Events
Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev
Abstract:
Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter
Procedia PDF Downloads 4789636 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1579635 The Performance of Six Exotic Perennial Grass Species in the Central Region of Saudi Arabia
Authors: A. Alsoqeer
Abstract:
The establishment, dry matter production and feeding value of six perennial grasses were measured over two growing seasons in a field experiments. The experiments were conducted at the Agricultural and Veterinary Medicine Research Station, Faculty of Agriculture and Veterinary Medicine, Qassim University, Kingdom of Saudi Arabia in 2009 and 2010 seasons. The six perennial grasses were: creeping bluegrass (Bothriochloa insculpta cv. Bisset), digit grass (Digitaria smutsi), Jarra digit grass (Digitaria milanjiana), panic (Panicum coloratum cv. Bambatsii), Sabi grass (Urochloa mosambicensis) and setaria (Setaria sphacelata cv. Kazungula). The experimental design used was a completely randomized block design with four replications. The results revealed significant differences among plant species of all agronomic characters and quality traits in the first year, while in the second year, plant species differed significantly for quality traits only. D. smutsi had a superior performance for all agronomic characters, however, it had the lowest values in protein content in the two years comparing with other genotypes. D. milanjiana and U. mosambicensis showed high values in dry matter yield and protein content in the first year, but showed a very poor performance in the second year because most of plants were die due to the low temperatures in the winter. These two species appear to be suitable for annual cultivation. The other species tolerate the cold winter and were a highly productive in the second year.Keywords: dry mater yield, grass species, cuts, quality traits, crude protein content
Procedia PDF Downloads 3199634 The Source of Fibre and Roxazyme® G2 Interacted to Influence the Length of Villi in the Ileal Epithelium of Growing Pigs Fed Fibrous Maize-Soybean Diets
Authors: F. Fushai, M.Tekere, M. Masafu, F. Siebrits, A. Kanengoni, F. Nherera
Abstract:
The effects of dietary fibre source on the histomorphology of the ileal epithelium were examined in growing pigs fed high fibre (242-250 g total dietary fibre kg-1 dry matter) diets fortified with Roxazyme® G2. The control was a standard, low fibre (141 g total dietary fibre kg-1 dry matter) diet formulated from dehulled soybean (Glycine max), maize (Zea Mays) meal and hominy chop. Five fibrous diets were evaluated in which fibre was increased by partial substitution of the grains in the control diet with maize cobs, soybean hulls, barley (Hordeum vulgare L) brewer’s grains, Lucerne (Medicago sativa) hay or wheat (Triticum aestivum) bran. Each diet was duplicated and 220 mg Roxazyme® G2 kg-1 dry mater was added to one of the mixtures. Seventy-two intact Large White X Landrace male pigs of weight 32 ± 5.6 kg pigs were randomly allocated to the diets in a complete randomised design with a 2 (fibre source) X (enzyme) factorial arrangement of treatments. The pigs were fed ad libitum for 10 weeks. Ileal tissue samples were taken at slaughter, at a point 50cm above the ileal-caecal valve. Villi length and area, and crypt depth were measured by computerised image analyses. The villi length: crypt ratio was calculated. The diet and the supplemental enzyme cocktail did not affect (p>0.05) any of the measured parameters. Significant (p=0.016) diet X enzyme interaction was observed for villi length whereby the enzyme reduced the villi length of pigs on the soy-hulls, standard and wheat bran diets, with an opposite effect on pigs on the maize cob, brewer’s grain, Lucerne diets. The results suggested fibre-source dependent changes in the morphology of the ileal epithelium of pigs fed high fibre, maize-soybean diets fortified with Roxazyme® G2.Keywords: fibre, growing pigs, histomorphology, ileum, Roxazyme® G2
Procedia PDF Downloads 4699633 Integrated Location-Allocation Planning in Multi Product Multi Echelon Single Period Closed Loop Supply Chain Network Design
Authors: Santhosh Srinivasan, Vipul Garhiya, Shahul Hamid Khan
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Single objective mathematical models for a total cost for the entire forward supply chain and reverse chain are considered. Here five different problems are considered by varying the number of facilities for illustration. M-MOGA, Shuffle Frog Leaping algorithm (SFLA) and CPLEX are used for finding the optimal solution for the mathematical model.Keywords: closed loop supply chain, genetic algorithm, random search, multi period, green supply chain
Procedia PDF Downloads 3919632 Batch-Oriented Setting Time`s Optimisation in an Aerodynamic Feeding System
Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis
Abstract:
The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. In former research activities, this system has been enabled to adjust itself using genetic algorithm. The longer the genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.Keywords: aerodynamic feeding system, batch size, optimisation, setting time
Procedia PDF Downloads 2579631 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan
Authors: Mohsen Ziaee
Abstract:
Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic
Procedia PDF Downloads 2079630 Species Composition of Alticinae Newman, 1834 (Coleoptera, Chrysomelidae): Distribution and Host Plants in Eastern Upper Plains (Setif, Algeria)
Authors: M. Bounechada, M. Fenni, S. Bouharati, S. E. Doumandji
Abstract:
The study was taken in Setif region (36° 11' 29 N and 5° 24' 34 E) located at the north-eastern of Algeria. This paper recorded and discusses zoogeography and host plant relationships of Setifian species Alticinae subfamily. A total of 50 species belonging to Alticinae subfamily of Chrysomelidae which is the economically important familty, were recorded from differentes localities of Setif region. They are included in 10 genera. Genera Longitarsus Berthold, 1827 is less species-rich than the other Alticinae genera captured. It represens about 38% of the all species collected. Cruciferae and Compositae were the mostly prefered host plant families representing Alticinae species. For each species we mentioned the collecting sites, geographical distribution and the host plants.Keywords: Algeria, Alticinae, Chrysomelidae, Coleoptera, distribution, host plants, species composition, Setif
Procedia PDF Downloads 2349629 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony
Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim
Abstract:
This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting
Procedia PDF Downloads 3309628 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering
Procedia PDF Downloads 1289627 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System
Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray
Abstract:
The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.Keywords: back-propagation algorithm, load instability, neural network, power distribution system
Procedia PDF Downloads 4359626 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher
Abstract:
Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.Keywords: machining stability, machine learning, sensor, optimization
Procedia PDF Downloads 2069625 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam
Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen
Abstract:
Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.Keywords: infectious disease, dengue, geospatial data, climate
Procedia PDF Downloads 3839624 Modelling the Effect of Distancing and Wearing of Face Masks on Transmission of COVID-19 Infection Dynamics
Authors: Nurudeen Oluwasola Lasisi
Abstract:
The COVID-19 is an infection caused by coronavirus, which has been designated as a pandemic in the world. In this paper, we proposed a model to study the effect of distancing and wearing masks on the transmission of COVID-19 infection dynamics. The invariant region of the model is established. The COVID-19 free equilibrium and the reproduction number of the model were obtained. The local and global stability of the model is determined using the linearization technique method and Lyapunov method. It was found that COVID-19 free equilibrium state is locally asymptotically stable in feasible region Ω if R₀ < 1 and globally asymptomatically stable if R₀ < 1, otherwise unstable if R₀ > 1. More so, numerical analysis and simulations of the dynamics of the COVID-19 infection are presented.Keywords: distancing, reproduction number, wearing of mask, local and global stability, modelling, transmission
Procedia PDF Downloads 1389623 Geospatial Technologies in Support of Civic Engagement and Cultural Heritage: Lessons Learned from Three Participatory Planning Workshops for Involving Local Communities in the Development of Sustainable Tourism Practices in Latiano, Brindisi
Authors: Mark Opmeer
Abstract:
The fruitful relationship between cultural heritage and digital technology is evident. Due to the development of user-friendly software, an increasing amount of heritage scholars use ict for their research activities. As a result, the implementation of information technology for heritage planning has become a research objective in itself. During the last decades, we have witnessed a growing debate and literature about the importance of computer technologies for the field of cultural heritage and ecotourism. Indeed, implementing digital technology in support of these domains can be very fruitful for one’s research practice. However, due to the rapid development of new software scholars may find it challenging to use these innovations in an appropriate way. As such, this contribution seeks to explore the interplay between geospatial technologies (geo-ict), civic engagement and cultural heritage and tourism. In this article, we discuss our findings on the use of geo-ict in support of civic participation, cultural heritage and sustainable tourism development in the southern Italian district of Brindisi. In the city of Latiano, three workshops were organized that involved local members of the community to distinguish and discuss interesting points of interests (POI’s) which represent the cultural significance and identity of the area. During the first workshop, a so called mappa della comunità was created on a touch table with collaborative mapping software, that allowed the participators to highlight potential destinations for tourist purposes. Furthermore, two heritage-based itineraries along a selection of identified POI’s was created to make the region attractive for recreants and tourists. These heritage-based itineraries reflect the communities’ ideas about the cultural identity of the region. Both trails were subsequently implemented in a dedicated mobile application (app) and was evaluated using a mixed-method approach with the members of the community during the second workshop. In the final workshop, the findings of the collaboration, the heritage trails and the app was evaluated with all participants. Based on our conclusions, we argue that geospatial technologies have a significant potential for involving local communities in heritage planning and tourism development. The participants of the workshops found it increasingly engaging to share their ideas and knowledge using the digital map of the touch table. Secondly, the use of a mobile application as instrument to test the heritage-based itineraries in the field was broadly considered as fun and beneficial for enhancing community awareness and participation in local heritage. The app furthermore stimulated the communities’ awareness of the added value of geospatial technologies for sustainable tourism development in the area. We conclude this article with a number of recommendations in order to provide a best practice for organizing heritage workshops with similar objectives.Keywords: civic engagement, geospatial technologies, tourism development, cultural heritage
Procedia PDF Downloads 2879622 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 1029621 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions
Authors: Cheng-Chi Yu, Chi-Shiun Chiou
Abstract:
This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission
Procedia PDF Downloads 2909620 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 6109619 Exploring the Strategy to Identify Seed-Specific Acyl-Hydrolases from Arabidopsis thaliana by Activity-Based Protein Profiling
Authors: M. Latha, Achintya K. Dolui, P. Vijayaraj
Abstract:
Vegetable oils mainly triacylglycerol (TAG) are an essential nutrient in the human diet as well as one of the major global commodity. There is a pressing need to enhance the yield of oil production to meet the world’s growing demand. Oil content is controlled by the balance between synthesis and breakdown in the cells. Several studies have established to increase the oil content by the overexpression of oil biosynthetic enzymes. Interestingly the significant oil accumulation was observed with impaired TAG hydrolysis. Unfortunately, the structural, as well as the biochemical properties of the lipase enzymes, is widely unknown, and so far, no candidate gene was identified in seeds except sugar-dependent1 (SDP1). Evidence has shown that SDP1directly responsible for initiation of oil breakdown in the seeds during germination. The present study is the identification of seed-specific acyl-hydrolases by activity based proteome profiling (ABPP) using Arabidopsis thaliana as a model system. The ABPP reveals that around 8 to 10 proteins having the serine hydrolase domain and are expressed during germination of Arabidopsis seed. The N-term sequencing, as well as LC-MS/MS analysis, was performed for the differentially expressed protein during germination. The coding region of the identified proteins was cloned, and lipases activity was assessed with purified recombinant protein. The enzyme assay was performed against various lipid substrates, and we have observed the acylhydrolase activity towards lysophosphatidylcholine and monoacylglycerol. Further, the functional characteristic of the identified protein will reveal the physiological significance the enzyme in oil accumulation.Keywords: lipase, lipids, vegetable oil, triacylglycerol
Procedia PDF Downloads 1879618 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.Keywords: climate change, energy, IPCC, solar radiation
Procedia PDF Downloads 1929617 Designing a Method to Control and Determine the Financial Performance of the Real Cost Sub-System in the Information Management System of Construction Projects
Authors: Alireza Ghaffari, Hassan Saghi
Abstract:
Project management is more complex than managing the day-to-day affairs of an organization. When the project dimensions are broad and multiple projects have to be monitored in different locations, the integrated management becomes even more complicated. One of the main concerns of project managers is the integrated project management, which is mainly rooted in the lack of accurate and accessible information from different projects in various locations. The collection of dispersed information from various parts of the network, their integration and finally the selective reporting of this information is among the goals of integrated information systems. It can help resolve the main problem, which is bridging the information gap between executives and senior managers in the organization. Therefore, the main objective of this study is to design and implement an important subset of a project management information system in order to successfully control the cost of construction projects so that its results can be used to design raw software forms and proposed relationships between different project units for the collection of necessary information.Keywords: financial performance, cost subsystem, PMIS, project management
Procedia PDF Downloads 1099616 Bi-Criteria Vehicle Routing Problem for Possibility Environment
Authors: Bezhan Ghvaberidze
Abstract:
A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory
Procedia PDF Downloads 4859615 Application of Low Frequency Ac Magnetic Field for Controlled Delivery of Drugs by Magnetic Nanoparticles
Authors: K. Yu Vlasova, M. A. Abakumov, H. Wishwarsao, M. Sokolsky, N. V. Nukolova, A. G. Majouga, Y. I. Golovin, N. L. Klyachko, A. V. Kabanov
Abstract:
Introduction:Nowadays pharmaceutical medicine is aimed to create systems for combined therapy, diagnostic, drug delivery and controlled release of active molecules to target cells. Magnetic nanoparticles (MNPs) are used to achieve this aim. MNPs can be applied in molecular diagnostics, magnetic resonance imaging (T1/T2 contrast agents), drug delivery, hyperthermia and could improve therapeutic effect of drugs. The most common drug containers, containing MNPs, are liposomes, micelles and polymeric molecules bonded to the MNPs surface. Usually superparamagnetic nanoparticles are used (the general diameter is about 5-6 nm) and all effects of high frequency magnetic field (MF) application are based on Neel relaxation resulting in heating of surrounded media. In this work we try to develop a new method to improve drug release from MNPs under super low frequency MF. We suppose that under low frequency MF exposures the Brown’s relaxation dominates and MNPs rotation could occur leading to conformation changes and release of bioactive molecules immobilized on MNPs surface.The aim of this work was to synthesize different systems with active drug (biopolymers coated MNPs nanoclusters with immobilized enzymes and doxorubicin (Dox) loaded magnetic liposomes/micelles) and investigate the effect of super low frequency MF on these drug containers. Methods: We have synthesized MNPs of magnetite with magnetic core diameter 7-12 nm . The MNPs were coated with block-copolymer of polylysine and polyethylene glycol. Superoxide dismutase 1 (SOD1) was electrostatically adsorbed on the surface of the clusters. Liposomes were prepared as follow: MNPs, phosphatidylcholine and cholesterol were dispersed in chloroform, dried to get film and then dispersed in distillated water, sonicated. Dox was added to the solution, pH was adjusted to 7.4 and excess of drug was removed by centrifugation through 3 kDa filters. Results: Polylysine coated MNPs formed nanosized clusters (as observed by TEM) with intensity average diameter of 112±5 nm and zeta potential 12±3 mV. After low frequency AC MF exposure we observed change of immobilized enzyme activity and hydrodynamic size of clusters. We suppose that the biomolecules (enzymes) are released from the MNPs surface followed with additional aggregation of complexes at the MF in medium. Centrifugation of the nanosuspension after AC MF exposures resulted in increase of positive charge of clusters and change in enzyme concentration in comparison with control sample without MF, thus confirming desorption of negatively charged enzyme from the positively charged surface of MNPs. Dox loaded magnetic liposomes had average diameter of 160±8 nm and polydispersity index (PDI) 0.25±0.07. Liposomes were stable in DW and PBS at pH=7.4 at 370C during a week. After MF application (10 min of exposure, 50 Hz, 230 mT) diameter of liposomes raised to 190±10 nm and PDI was 0.38±0.05. We explain this by destroying and/or reorganization of lipid bilayer, that leads to changes in release of drug in comparison with control without MF exposure. Conclusion: A new application of low frequency AC MF for drug delivery and controlled drug release was shown. Investigation was supported by RSF-14-13-00731 grant, K1-2014-022 grant.Keywords: magnetic nanoparticles, low frequency magnetic field, drug delivery, controlled drug release
Procedia PDF Downloads 4829614 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 3699613 Survival of Four Probiotic Strains in Acid, Bile Salt and After Spray Drying
Authors: Rawichar Chaipojjana, Suttipong Phosuksirikul, Arunsri Leejeerajumnean
Abstract:
The objective of the study was to select the survival of probiotic strains when exposed to acidic and bile salts condition. Four probiotic strains (Lactobacillus casei subsp. rhamnosus TISTR 047, Lactobacillus casei TISTR 1500, Lactobacillus acidophilus TISTR 1338 and Lactobacillus plantarum TISTR 1465) were cultured in MRS broth and incubated at 35ºC for 15 hours before being inoculated into acidic condition (5 M HCl, pH 2) for 2 hours and bile salt (0.3%, pH 5.8) for 8 hour. The survived probiotics were counted in MRS agar. Among four stains, Lactobacillus casei subsp. rhamnosus TISTR 047 was the highest tolerance specie. Lactobacillus casei subsp. rhamnosus TISTR 047 reduced 6.74±0.07 log CFU/ml after growing in acid and 5.52±0.05 log CFU/ml after growing in bile salt. Then, double emulsion of microorganisms was chosen to encapsulate before spray drying. Spray drying was done with the inlet temperature 170ºC and outlet temperature 80ºC. The results showed that the survival of encapsulated Lactobacillus casei subsp. rhamnosus TISTR 047 after spray drying decreased from 9.63 ± 0.32 to 8.31 ± 0.11 log CFU/ml comparing with non-encapsulated, 9.63 ± 0.32 to 4.06 ± 0.08 log CFU/ml. Therefore, Lactobacillus casei subsp. rhamnosus TISTR 047 would be able to survive in gastrointestinal and spray drying condition.Keywords: probiotic, acid, bile salt, spray drying
Procedia PDF Downloads 359