Search results for: renewable energy
6831 Feasibilty and Penetration of Electric Vehicles in Indian Power Grid
Authors: Kashyap L. Mokariya, Varsha A. Shah, Makarand M. Lokhande
Abstract:
As the current status and growth of Indian automobile industry is remarkable, transportation sectors are the main concern in terms of Energy security and climate change. Rising demand of fuel and its dependency on other countries affects the GDP of nation. So in this context if the 10 percent of vehicle got operated in Electrical mode how much saving in terms of Rs and in terms of liters is achieved has been analyzed which is also a part of Nations Electric mobility mission plan. Analysis is also done for converting unit consumption of Electricity of Electric vehicle into equivalent fuel consumption in liters which shows that at present tariff rate Electrical operated vehicles are far more beneficial. It also gives benchmark to the authorities to set the tariff rate for Electrical vehicles. Current situation of Indian grid is shown and how the Gap between Generation and Demand can be reduced is analyzed in terms of increasing generation capacity and Energy Conservation measures. As the certain regions of country is facing serious deficit than how to take energy conservation measures in Industry and especially in rural areas where generally Energy Auditing is not carried out that is analyzed in context of Electric vehicle penetration in near future. Author was a part of Vishvakarma yojna where in 255 villages of Gujarat Energy losses were measured and solutions were given to mitigate them and corresponding report to the authorities of villages was delivered.Keywords: vehiclepenetration, feasibility, Energyconservation, future grid, Energy security, pf controller
Procedia PDF Downloads 3636830 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine
Authors: Mohammed Nabeel Khan, C. Perisamy
Abstract:
Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex
Procedia PDF Downloads 1636829 Numerical Investigation of Tsunami Flow Characteristics and Energy Reduction through Flexible Vegetation
Authors: Abhishek Mukherjee, Juan C. Cajas, Jenny Suckale, Guillaume Houzeaux, Oriol Lehmkuhl, Simone Marras
Abstract:
The investigation of tsunami flow characteristics and the quantification of tsunami energy reduction through the coastal vegetation is important to understand the protective benefits of nature-based mitigation parks. In the present study, a three-dimensional non-hydrostatic incompressible Computational Fluid Dynamics model with a two-way coupling enabled fluid-structure interaction approach (FSI) is used. After validating the numerical model against experimental data, tsunami flow characteristics have been investigated by varying vegetation density, modulus of elasticity, the gap between stems, and arrangement or distribution of vegetation patches. Streamwise depth average velocity profiles, turbulent kinetic energy, energy flux reflection, and dissipation extracted by the numerical study will be presented in this study. These diagnostics are essential to assess the importance of different parameters to design the proper coastal defense systems. When a tsunami wave reaches the shore, it transforms into undular bores, which induce scour around offshore structures and sediment transport. The bed shear stress, instantaneous turbulent kinetic energy, and the vorticity near-bed will be presented to estimate the importance of vegetation to prevent tsunami-induced scour and sediment transport.Keywords: coastal defense, energy flux, fluid-structure interaction, natural hazards, sediment transport, tsunami mitigation
Procedia PDF Downloads 1536828 The Antecedents That Effect on Organizational Commitment of the Public Enterprises in Thailand
Authors: Mananya Meenakorn
Abstract:
The purpose of this study is to examine the impact of public enterprise reform policy on the attributes of organizational commitments in the public energy enterprises in Thailand. It compares three structural types of public energy enterprises: totally state-owned public enterprises, partially transformed public enterprises and totally transformed public enterprises, based on the degree of state ownership and the level of management control that exist in the public reformed organizations, by analyzing the presence of the desirable attributes of organizational commitment as perceived by employees. Findings indicate that there are statistically significant differences in the level of some dimensions of organizational commitment between the three types of public energy enterprises. The results also indicate empirical evidence concerning the causal relationship between the antecedents and organizational commitment. Whereas change-related behaviors show a direct negative influence on organizational commitment, both HRM practices and work-related values indicate direct positive influences on them also.Keywords: affective commitment, organizational commitment, public enterprise reform organizations, public energy enterprises in Thailand
Procedia PDF Downloads 2996827 Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators
Authors: Yana Xiao
Abstract:
The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible.Keywords: triboelectric nanogenerator, energy harvest, liquid tribomaterial, structure innovation
Procedia PDF Downloads 946826 Smart Production Planning: The Case of Aluminium Foundry
Authors: Samira Alvandi
Abstract:
In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries
Procedia PDF Downloads 816825 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 1356824 Assessing the Feasibility of Incorporating Green Infrastructure into Colonial-Era Buildings in the Caribbean
Authors: Luz-Marina Roberts, Ancil Kirk, Aisha Donaldson, Anya Seepaul, Jade Lakhan, Shianna Tikasingh
Abstract:
Climate change has produced a crisis that particularly threatens small island states in the Caribbean. Developers and climate enthusiasts alike are now forced to find new and sustainable ways of building. Focus on existing buildings is particularly needed in Trinidad and Tobago, like other islands, especially as these countries are vulnerable to climate threats and geographic locations with close proximity to a hurricane. Additionally, since many colonial-era style buildings still exist, the idea that they are energy inefficient is at the forefront of the work of policy-makers. The question that remains is can these buildings be retrofitted to reflect the modern era while considering climate resilience. This paper aims to investigate the energy efficiency of colonial-era buildings in Port of Spain and whether these buildings in Trinidad and Tobago, if found to be energy inefficient, can be more energy efficient and sustainable. This involves collecting surveys from building management in colonial-era buildings and researching literature on colonial architecture in the Caribbean and modern innovations in green building designs. Additionally, the data and experiences from the Town and Country Planning Division in the Ministry of Planning and Development of Trinidad and Tobago will inform the paper. This research will aid in re-envisioning how green infrastructure can be applied to urban environments with older buildings and help inform planning policy as it relates to sustainability and energy efficiency.Keywords: spatial planning, climate resilience, energy efficiency, sustainable development
Procedia PDF Downloads 716823 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium
Authors: Y. J. Chen, T. M. Yue, Z. N. Guo
Abstract:
This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load
Procedia PDF Downloads 2166822 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion
Authors: Yingchen Yang
Abstract:
In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.Keywords: unidirectional, vertical axis, wave energy converter, wave rotor
Procedia PDF Downloads 2406821 Thermal Performance of an Air Heating Storing System
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.Keywords: solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation
Procedia PDF Downloads 3356820 Public Environmental Investment Analysis of Japan
Authors: K. Y. Chen, H. Chua, C. W. Kan
Abstract:
Japan is a well-developed country but the environmental issues are still a hot issue. In this study, we will analyse how the environmental investment affects the sustainable development in Japan. This paper will first describe the environmental policy of Japan and the effort input by the Japan government. Then, we will collect the yearly environmental data and also information about the environmental investment. Based on the data collected, we try to figure out the relationship between environmental investment and sustainable development in Japan. In addition, we will analyse the SWOT of environmental investment in Japan. Based on the economic information collected, Japan established a sound material-cycle society through changes in business and life styles. A comprehensive legal system for this kind of society was established in Japan. In addition, other supporting measures, such as financial measures, utilization of economic instruments, implementation of research and promotion of education and science and technology, help Japan to cope with the recent environmental challenges. Japan’s excellent environmental technologies changed its socioeconomic system. They are at the highest global standards. This can be reflected by the number of patents registered in Japan which has been on the steady growth. Country by country comparison in the application for patents on environmental technologies also indicates that Japan ranks high in such areas as atmospheric pollution and water quality management, solid waste management and renewable energy. This is a result of the large expenditure invested on research and development.Keywords: Japan, environmental investment, sustainable development, analysis
Procedia PDF Downloads 2716819 Modeling of a Concentrating Photovoltaic Module with and without Cooling System
Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi
Abstract:
Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement
Procedia PDF Downloads 4026818 Analysis and Experimental Research on the Influence of Lubricating Oil on the Transmission Efficiency of New Energy Vehicle Gearbox
Authors: Chen Yong, Bi Wangyang, Zang Libin, Li Jinkai, Cheng Xiaowei, Liu Jinmin, Yu Miao
Abstract:
New energy vehicle power transmission systems continue to develop in the direction of high torque, high speed, and high efficiency. The cooling and lubrication of the motor and the transmission system are integrated, and new requirements are placed on the lubricants for the transmission system. The effects of traditional lubricants and special lubricants for new energy vehicles on transmission efficiency were studied through experiments and simulation methods. A mathematical model of the transmission efficiency of the lubricating oil in the gearbox was established. The power loss of each part was analyzed according to the working conditions. The relationship between the speed and the characteristics of different lubricating oil products on the power loss of the stirring oil was discussed. The minimum oil film thickness was required for the life of the gearbox. The accuracy of the calculation results was verified by the transmission efficiency test conducted on the two-motor integrated test bench. The results show that the efficiency increases first and then decreases with the increase of the speed and decreases with the increase of the kinematic viscosity of the lubricant. The increase of the kinematic viscosity amplifies the transmission power loss caused by the high speed. New energy vehicle special lubricants have less attenuation of transmission efficiency in the range above mid-speed. The research results provide a theoretical basis and guidance for the evaluation and selection of transmission efficiency of gearbox lubricants for new energy vehicles.Keywords: new energy vehicles, lubricants, transmission efficiency, kinematic viscosity, test and simulation
Procedia PDF Downloads 1336817 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners
Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda
Abstract:
In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner
Procedia PDF Downloads 1626816 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas
Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad
Abstract:
A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture
Procedia PDF Downloads 4036815 Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures
Authors: Kewen Li
Abstract:
Much attention has been paid to the application of low temperature thermal resources, especially for power generation in recent years. Most of the current commercialized thermal, including geothermal, power-generation technologies convert thermal energy to electric energy indirectly, that is, making mechanical work before producing electricity. Technology using thermoelectric generator (TEG), however, can directly transform thermal energy into electricity by using Seebeck effect. TEG technology has many advantages such as compactness, quietness, and reliability because there are no moving parts. One of the big disadvantages of TEGs is the low efficiency from thermal to electric energy. For this reason, we redesigned and modified our previous 1 KW (at a temperature difference of around 120 °C) TEG system. The efficiency of the system was improved significantly, about 20% greater. Laboratory experiments have been conducted to measure the output power, including both open and net power, at different conditions: different modes of connections between TEG modules, different mechanical structures, different temperature differences between hot and cold sides. The cost of the TEG power generator has been reduced further because of the increased efficiency and is lower than that of photovoltaics (PV) in terms of equivalent energy generated. The TEG apparatus has been pilot tested and the data will be presented. This kind of TEG power system can be applied in many thermal and geothermal sites with low temperature resources, including oil fields where fossil and geothermal energies are co-produced.Keywords: TEG, direct power generation, efficiency, thermoelectric effect
Procedia PDF Downloads 2446814 Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture
Authors: Farhan Lafta Rashid, Khudhair Abass Dawood, Ahmed Hashim
Abstract:
Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3.Keywords: energy storage, enhancement absorbed heat, glass impurities, solar energy
Procedia PDF Downloads 4386813 Fabrication of 2D Nanostructured Hybrid Material-Based Devices for High-Performance Supercapacitor Energy Storage
Authors: Sunil Kumar, Vinay Kumar, Mamta Bulla, Rita Dahiya
Abstract:
Supercapacitors have emerged as a leading energy storage technology, gaining popularity in applications like digital telecommunications, memory backup, and hybrid electric vehicles. Their appeal lies in a long cycle life, high power density, and rapid recharge capabilities. These exceptional traits attract researchers aiming to develop advanced, cost-effective, and high-energy-density electrode materials for next-generation energy storage solutions. Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In the current study, a composite was synthesized by combining MoS2 with reduced graphene oxide (rGO) under optimal conditions and characterized using various techniques, including XRD, FTIR, SEM and XPS. The electrochemical properties of the composite material were assessed through cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The supercapacitor device demonstrated a specific capacitance of 153 F g-1 at a current density of 1 Ag-1, achieving an excellent energy density of 30.5 Wh kg-1 and a power density of 600 W kg-1. Additionally, it maintained excellent cyclic stability over 5000 cycles, establishing it as a promising candidate for efficient and durable energy storage solutions. These findings highlight the dynamic relationship between electrode materials and offer valuable insights for the development and enhancement of high-performance symmetric devices.Keywords: 2D material, energy density, galvanostatic charge-discharge, hydrothermal reactor, specific capacitance
Procedia PDF Downloads 216812 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal
Abstract:
Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.Keywords: energy recovery, organic waste, urban energy modelling with INSEL, waste flow
Procedia PDF Downloads 1416811 Design and Comparative Analysis of Grid-Connected Bipv System with Monocrystalline Silicon and Polycrystalline Silicon in Kandahar Climate
Authors: Ahmad Shah Irshad, Naqibullah Kargar, Wais Samadi
Abstract:
Building an integrated photovoltaic (BIPV) system is a new and modern technique for solar energy production in Kandahar. Due to its location, Kandahar has abundant sources of solar energy. People use both monocrystalline and polycrystalline silicon solar PV modules for the grid-connected solar PV system, and they don’t know which technology performs better for the BIPV system. This paper analyses the parameters described by IEC61724, “Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis,” to evaluate which technology shows better performance for the BIPV system. The monocrystalline silicon BIPV system has a 3.1% higher array yield than the polycrystalline silicon BIPV system. The final yield is 0.2%, somewhat higher for monocrystalline silicon than polycrystalline silicon. Monocrystalline silicon has 0.2% and 4.5% greater yearly yield factor and capacity factors than polycrystalline silicon, respectively. Monocrystalline silicon shows 0.3% better performance than polycrystalline silicon. With 1.7% reduction and 0.4% addition in collection losses and useful energy produced, respectively, monocrystalline silicon solar PV system shows good performance than polycrystalline silicon solar PV system. But system losses are the same for both technologies. The monocrystalline silicon BIPV system injects 0.2% more energy into the grid than the polycrystalline silicon BIPV system.Keywords: photovoltaic technologies, performance analysis, solar energy, solar irradiance, performance ratio
Procedia PDF Downloads 3776810 The Use of Building Energy Simulation Software in Case Studies: A Literature Review
Authors: Arman Ameen, Mathias Cehlin
Abstract:
The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.Keywords: building simulation, IDA ICE, literature review, validation
Procedia PDF Downloads 1366809 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)
Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud
Abstract:
Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.Keywords: electric vehicle, redox flow battery, packaging, vanadium
Procedia PDF Downloads 4396808 Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles
Authors: Ziwen Fang, Jianran Wang, Hongtao Liu, Weiguo Kong, Kefei Wang, Qi Luo, Haifeng Hong
Abstract:
A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results.Keywords: railway vehicle collision, crash energy management design, finite element method, crashworthiness test
Procedia PDF Downloads 4066807 CFD Effect of the Tidal Grating in Opposite Directions
Authors: N. M. Thao, I. Dolguntseva, M. Leijon
Abstract:
Flow blockages referring to the increase in flow are considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. Computational Fluid Dynamic simulation studies the flow characteristics by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinct features of flow velocity between “convergent” and “divergent” grating placements are up to in confined conditions. Furthermore, the velocity in case of granting is higher than that of the divergent grating.Keywords: marine current energy, converter, turbine granting, RANS simulation, water flow velocity
Procedia PDF Downloads 4126806 Potential Application of Modified Diglycolamide Resin for Rare Earth Element Extraction
Authors: Junnile Romero, Ilhwan Park, Vannie Joy Resabal, Carlito Tabelin, Richard Alorro, Leaniel Silva, Joshua Zoleta, Takunda Mandu, Kosei Aikawa, Mayumi Ito, Naoki Hiroyoshi
Abstract:
Rare earth elements (REE) play a vital role in technological advancement due to their unique physical and chemical properties essential for various renewable energy applications. However, this increasing demand represents a challenging task for sustainability that corresponds to various research interests relating to the development of various extraction techniques, particularly on the extractant being used. In this study, TK221 (a modified polymer resin containing diglycolamide, carbamoyl methyl phosphine oxide (CMPO), and diglycolamide (DGA-N)) has been investigated as a conjugate extractant. FTIR and SEM analysis results confirmed the presence of CMPO and DGA-N being coated onto the PS-DVB support of TK221. Moreover, the kinetic rate law and adsorption isotherm batch test was investigated to understand the corresponding adsorption mechanism. The results show that REEs’ (Nd, Y, Ce, and Er) obtained pseudo-second-order kinetics and Langmuir isotherm, suggesting that the adsorption mechanism undergoes a single monolayer adsorption site via a chemisorption process. The Qmax values of Nd, Ce, Er, Y, and Fe were 45.249 mg/g, 43.103 mg/g, 35.088 mg/g, 15.552 mg/g, and 12.315 mg/g, respectively. This research further suggests that TK221 polymer resin can be used as an alternative absorbent material for an effective REE extraction.Keywords: rare earth element, diglycolamide, characterization, extraction resin
Procedia PDF Downloads 1216805 Joint Simulation and Estimation for Geometallurgical Modeling of Crushing Consumption Energy in the Mineral Processing Plants
Authors: Farzaneh Khorram, Xavier Emery
Abstract:
In this paper, it is aimed to create a crushing consumption energy (CCE) block model and determine the blocks with the potential to have the maximum grinding process energy consumption for the study area. For this purpose, a joint estimate (co-kriging) and joint simulation (turning band method and plurigaussian methods) to predict the CCE based on its correlation with SAG power index (SPI), A×B, and ball mill bond work Index (BWI). The analysis shows that TBCOSIM and plurigaussian have the more realistic results compared to cokriging. It seems logical due to the nature of the data geometallurgical and the linearity of the kriging method and the smoothing effect of kriging.Keywords: plurigaussian, turning band, cokriging, geometallurgy
Procedia PDF Downloads 816804 A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied, known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity, which cannot be explained by modern physics, and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe, which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature can be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a "neutral state," possessing an energy level that is referred to as the "base energy." The governing principles of base energy are discussed in detail in our second paper in the series "A Conceptual Study for Addressing the Singularity of the Emerging Universe," which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution
Procedia PDF Downloads 1066803 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light
Authors: W. Y. Zhu, X. L. Yan, Y. Zhou
Abstract:
Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide
Procedia PDF Downloads 3646802 Design and Analysis of Blade Length and Number of Blades of Small Horizontal Axis Wind Turbine
Authors: Ali Gul, Bhart Kumar, Samiullah Ansari
Abstract:
The current research is focused on the study of various lengths of blades (i.e. 1 to 5m) and several bladed rotors (3,5,7 & 9) of small horizontal axis wind turbine under low wind conditions usingQBlade software. Initially, the rotor was designed using airfoil SG6043 with five different lengths of the blades. Subsequently, simulations were carried out in which, under low wind regimes, the power output was observed. Further, four rotors having 3,5,7 & 9 blades were analyzed. However, the most promising coefficient of performance (CP) was observed at the 3-bladed rotor. Both studies established a clear view of harvesting wind energy at low wind speeds that can be mobilized in the energy sector. That suggests the utilization of wind energy at the domestic levelwhich is acceleratory growing in the last few decades.Keywords: small HAWT, QBlade, BEM, CFD
Procedia PDF Downloads 183