Search results for: automatic mapping
172 Mining Scientific Literature to Discover Potential Research Data Sources: An Exploratory Study in the Field of Haemato-Oncology
Authors: A. Anastasiou, K. S. Tingay
Abstract:
Background: Discovering suitable datasets is an important part of health research, particularly for projects working with clinical data from patients organized in cohorts (cohort data), but with the proliferation of so many national and international initiatives, it is becoming increasingly difficult for research teams to locate real world datasets that are most relevant to their project objectives. We present a method for identifying healthcare institutes in the European Union (EU) which may hold haemato-oncology (HO) data. A key enabler of this research was the bibInsight platform, a scientometric data management and analysis system developed by the authors at Swansea University. Method: A PubMed search was conducted using HO clinical terms taken from previous work. The resulting XML file was processed using the bibInsight platform, linking affiliations to the Global Research Identifier Database (GRID). GRID is an international, standardized list of institutions, including the city and country in which the institution exists, as well as a category of the main business type, e.g., Academic, Healthcare, Government, Company. Countries were limited to the 28 current EU members, and institute type to 'Healthcare'. An article was considered valid if at least one author was affiliated with an EU-based healthcare institute. Results: The PubMed search produced 21,310 articles, consisting of 9,885 distinct affiliations with correspondence in GRID. Of these articles, 760 were from EU countries, and 390 of these were healthcare institutes. One affiliation was excluded as being a veterinary hospital. Two EU countries did not have any publications in our analysis dataset. The results were analysed by country and by individual healthcare institute. Networks both within the EU and internationally show institutional collaborations, which may suggest a willingness to share data for research purposes. Geographical mapping can ensure that data has broad population coverage. Collaborations with industry or government may exclude healthcare institutes that may have embargos or additional costs associated with data access. Conclusions: Data reuse is becoming increasingly important both for ensuring the validity of results, and economy of available resources. The ability to identify potential, specific data sources from over twenty thousand articles in less than an hour could assist in improving knowledge of, and access to, data sources. As our method has not yet specified if these healthcare institutes are holding data, or merely publishing on that topic, future work will involve text mining of data-specific concordant terms to identify numbers of participants, demographics, study methodologies, and sub-topics of interest.Keywords: data reuse, data discovery, data linkage, journal articles, text mining
Procedia PDF Downloads 117171 Analysis of Influencing Factors on Infield-Logistics: A Survey of Different Farm Types in Germany
Authors: Michael Mederle, Heinz Bernhardt
Abstract:
The Management of machine fleets or autonomous vehicle control will considerably increase efficiency in future agricultural production. Especially entire process chains, e.g. harvesting complexes with several interacting combine harvesters, grain carts, and removal trucks, provide lots of optimization potential. Organization and pre-planning ensure to get these efficiency reserves accessible. One way to achieve this is to optimize infield path planning. Particularly autonomous machinery requires precise specifications about infield logistics to be navigated effectively and process optimized in the fields individually or in machine complexes. In the past, a lot of theoretical optimization has been done regarding infield logistics, mainly based on field geometry. However, there are reasons why farmers often do not apply the infield strategy suggested by mathematical route planning tools. To make the computational optimization more useful for farmers this study focuses on these influencing factors by expert interviews. As a result practice-oriented navigation not only to the field but also within the field will be possible. The survey study is intended to cover the entire range of German agriculture. Rural mixed farms with simple technology equipment are considered as well as large agricultural cooperatives which farm thousands of hectares using track guidance and various other electronic assistance systems. First results show that farm managers using guidance systems increasingly attune their infield-logistics on direction giving obstacles such as power lines. In consequence, they can avoid inefficient boom flippings while doing plant protection with the sprayer. Livestock farmers rather focus on the application of organic manure with its specific requirements concerning road conditions, landscape terrain or field access points. Cultivation of sugar beets makes great demands on infield patterns because of its particularities such as the row crop system or high logistics demands. Furthermore, several machines working in the same field simultaneously influence each other, regardless whether or not they are of the equal type. Specific infield strategies always are based on interactions of several different influences and decision criteria. Single working steps like tillage, seeding, plant protection or harvest mostly cannot be considered each individually. The entire production process has to be taken into consideration to detect the right infield logistics. One long-term objective of this examination is to integrate the obtained influences on infield strategies as decision criteria into an infield navigation tool. In this way, path planning will become more practical for farmers which is a basic requirement for automatic vehicle control and increasing process efficiency.Keywords: autonomous vehicle control, infield logistics, path planning, process optimizing
Procedia PDF Downloads 233170 Modelling of Meandering River Dynamics in Colombia: A Case Study of the Magdalena River
Authors: Laura Isabel Guarin, Juliana Vargas, Philippe Chang
Abstract:
The analysis and study of Open Channel flow dynamics for River applications has been based on flow modelling using discreet numerical models based on hydrodynamic equations. The overall spatial characteristics of rivers, i.e. its length to depth to width ratio generally allows one to correctly disregard processes occurring in the vertical or transverse dimensions thus imposing hydrostatic pressure conditions and considering solely a 1D flow model along the river length. Through a calibration process an accurate flow model may thus be developed allowing for channel study and extrapolation of various scenarios. The Magdalena River in Colombia is a large river basin draining the country from South to North with 1550 km with 0.0024 average slope and 275 average width across. The river displays high water level fluctuation and is characterized by a series of meanders. The city of La Dorada has been affected over the years by serious flooding in the rainy and dry seasons. As the meander is evolving at a steady pace repeated flooding has endangered a number of neighborhoods. This study has been undertaken in pro of correctly model flow characteristics of the river in this region in order to evaluate various scenarios and provide decision makers with erosion control measures options and a forecasting tool. Two field campaigns have been completed over the dry and rainy seasons including extensive topographical and channel survey using Topcon GR5 DGPS and River Surveyor ADCP. Also in order to characterize the erosion process occurring through the meander, extensive suspended and river bed samples were retrieved as well as soil perforation over the banks. Hence based on DEM ground digital mapping survey and field data a 2DH flow model was prepared using the Iber freeware based on the finite volume method in a non-structured mesh environment. The calibration process was carried out comparing available historical data of nearby hydrologic gauging station. Although the model was able to effectively predict overall flow processes in the region, its spatial characteristics and limitations related to pressure conditions did not allow for an accurate representation of erosion processes occurring over specific bank areas and dwellings. As such a significant helical flow has been observed through the meander. Furthermore, the rapidly changing channel cross section as a consequence of severe erosion has hindered the model’s ability to provide decision makers with a valid up to date planning tool.Keywords: erosion, finite volume method, flow dynamics, flow modelling, meander
Procedia PDF Downloads 319169 Scalable Performance Testing: Facilitating The Assessment Of Application Performance Under Substantial Loads And Mitigating The Risk Of System Failures
Authors: Solanki Ravirajsinh
Abstract:
In the software testing life cycle, failing to conduct thorough performance testing can result in significant losses for an organization due to application crashes and improper behavior under high user loads in production. Simulating large volumes of requests, such as 5 million within 5-10 minutes, is challenging without a scalable performance testing framework. Leveraging cloud services to implement a performance testing framework makes it feasible to handle 5-10 million requests in just 5-10 minutes, helping organizations ensure their applications perform reliably under peak conditions. Implementing a scalable performance testing framework using cloud services and tools like JMeter, EC2 instances (Virtual machine), cloud logs (Monitor errors and logs), EFS (File storage system), and security groups offers several key benefits for organizations. Creating performance test framework using this approach helps optimize resource utilization, effective benchmarking, increased reliability, cost savings by resolving performance issues before the application is released. In performance testing, a master-slave framework facilitates distributed testing across multiple EC2 instances to emulate many concurrent users and efficiently handle high loads. The master node orchestrates the test execution by coordinating with multiple slave nodes to distribute the workload. Slave nodes execute the test scripts provided by the master node, with each node handling a portion of the overall user load and generating requests to the target application or service. By leveraging JMeter's master-slave framework in conjunction with cloud services like EC2 instances, EFS, CloudWatch logs, security groups, and command-line tools, organizations can achieve superior scalability and flexibility in their performance testing efforts. In this master-slave framework, JMeter must be installed on both the master and each slave EC2 instance. The master EC2 instance functions as the "brain," while the slave instances operate as the "body parts." The master directs each slave to execute a specified number of requests. Upon completion of the execution, the slave instances transmit their results back to the master. The master then consolidates these results into a comprehensive report detailing metrics such as the number of requests sent, encountered errors, network latency, response times, server capacity, throughput, and bandwidth. Leveraging cloud services, the framework benefits from automatic scaling based on the volume of requests. Notably, integrating cloud services allows organizations to handle more than 5-10 million requests within 5 minutes, depending on the server capacity of the hosted website or application.Keywords: identify crashes of application under heavy load, JMeter with cloud Services, Scalable performance testing, JMeter master and slave using cloud Services
Procedia PDF Downloads 30168 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 89167 CybeRisk Management in Banks: An Italian Case Study
Authors: E. Cenderelli, E. Bruno, G. Iacoviello, A. Lazzini
Abstract:
The financial sector is exposed to the risk of cyber-attacks like any other industrial sector. Furthermore, the topic of CybeRisk (cyber risk) has become particularly relevant given that Information Technology (IT) attacks have increased drastically in recent years, and cannot be stopped by single organizations requiring a response at international and national level. IT risk is never a matter purely for the IT manager, although he clearly plays a key role. A bank's risk management function requires a thorough understanding of the evolving risks as well as the tools and practical techniques available to address them. Upon the request of European and national legislation regarding CybeRisk in the financial system, banks are therefore called upon to strengthen the operational model for CybeRisk management. This will require an important change with a more intense collaboration with the structures that deal with information security for the development of an ad hoc system for the evaluation and control of this type of risk. The aim of the work is to propose a framework for the management and control of CybeRisk that will bridge the gap in the literature regarding the understanding and consideration of CybeRisk as an integral part of business management. The IT function has a strong relevance in the management of CybeRisk, which is perceived mainly as operational risk, but with a positive tendency on the part of risk management to the identification of CybeRisk assessment methods that are increasingly complete, quantitative and able to better describe the possible impacts on the business. The paper provides answers to the research questions: Is it possible to define a CybeRisk governance structure able to support the comparison between risk and security? How can the relationships between IT assets be integrated into a cyberisk assessment framework to guarantee a system of protection and risks control? From a methodological point of view, this research uses a case study approach. The choice of “Monte dei Paschi di Siena” was determined by the specific features of one of Italy’s biggest lenders. It is chosen to use an intensive research strategy: an in-depth study of reality. The case study methodology is an empirical approach to explore a complex and current phenomenon that develops over time. The use of cases has also the advantage of allowing the deepening of aspects concerning the "how" and "why" of contemporary events, on which the scholar has little control. The research bases on quantitative data and qualitative information obtained through semi-structured interviews of an open-ended nature and questionnaires to directors, members of the audit committee, risk, IT and compliance managers, and those responsible for internal audit function and anti-money laundering. The added value of the paper can be seen in the development of a framework based on a mapping of IT assets from which it is possible to identify their relationships for purposes of a more effective management and control of cyber risk.Keywords: bank, CybeRisk, information technology, risk management
Procedia PDF Downloads 232166 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 294165 A Q-Methodology Approach for the Evaluation of Land Administration Mergers
Authors: Tsitsi Nyukurayi Muparari, Walter Timo De Vries, Jaap Zevenbergen
Abstract:
The nature of Land administration accommodates diversity in terms of both spatial data handling activities and the expertise involved, which supposedly aims to satisfy the unpredictable demands of land data and the diverse demands of the customers arising from the land. However, it is known that strategic decisions of restructuring are in most cases repelled in favour of complex structures that strive to accommodate professional diversity and diverse roles in the field of Land administration. Yet despite of this widely accepted knowledge, there is scanty theoretical knowledge concerning the psychological methodologies that can extract the deeper perceptions from the diverse spatial expertise in order to explain the invisible control arm of the polarised reception of the ideas of change. This paper evaluates Q methodology in the context of a cadastre and land registry merger (under one agency) using the Swedish cadastral system as a case study. Precisely, the aim of this paper is to evaluate the effectiveness of Q methodology towards modelling the diverse psychological perceptions of spatial professionals who are in a widely contested decision of merging the cadastre and land registry components of Land administration using the Swedish cadastral system as a case study. An empirical approach that is prescribed by Q methodology starts with the concourse development, followed by the design of statements and q sort instrument, selection of the participants, the q-sorting exercise, factor extraction by PQMethod and finally narrative development by logic of abduction. The paper uses 36 statements developed from a dominant competing value theory that stands out on its reliability and validity, purposively selects 19 participants to do the Qsorting exercise, proceeds with factor extraction from the diversity using varimax rotation and judgemental rotation provided by PQMethod and effect the narrative construction using the logic abduction. The findings from the diverse perceptions from cadastral professionals in the merger decision of land registry and cadastre components in Sweden’s mapping agency (Lantmäteriet) shows that focus is rather inclined on the perfection of the relationship between the legal expertise and technical spatial expertise. There is much emphasis on tradition, loyalty and communication attributes which concern the organisation’s internal environment rather than innovation and market attributes that reveals customer behavior and needs arising from the changing humankind-land needs. It can be concluded that Q methodology offers effective tools that pursues a psychological approach for the evaluation and gradations of the decisions of strategic change through extracting the local perceptions of spatial expertise.Keywords: cadastre, factor extraction, land administration merger, land registry, q-methodology, rotation
Procedia PDF Downloads 196164 Prosecution as Persecution: Exploring the Enduring Legacy of Judicial Harassment of Human Rights Defenders and Political Opponents in Zimbabwe, Cases from 2013-2016
Authors: Bellinda R. Chinowawa
Abstract:
As part of a wider strategy to stifle civil society, Governments routinely resort to judicial harassment through the use of civil and criminal to impugn the integrity of human rights defenders and that of perceived political opponents. This phenomenon is rife in militarised or autocratic regimes where there is no tolerance for dissenting voices. Zimbabwe, ostensibly a presidential republic founded on the values of transparency, equality, freedom, is characterised by brutal suppression of perceived political opponents and those who assert their basic human rights. This is done through a wide range of tactics including unlawful arrests and detention, torture and other cruel, inhuman degrading treatment and enforced disappearances. Professionals including, journalists and doctors are similarly not spared from state attack. For human rights defenders, the most widely used tool of repression is that of judicial harassment where the judicial system is used to persecute them. This can include the levying of criminal charges, civil lawsuits and unnecessary administrative proceedings. Charges preferred against range from petty offences such as criminal nuisance to more serious charges of terrorism and subverting a constitutional government. Additionally, government sponsored individuals and organisations file strategic lawsuits with pecuniary implications order to intimidate and silence critics and engender self-censorship. Some HRDs are convicted and sentenced to prison terms, despite not being criminals in a true sense. While others are acquitted judicial harassment diverts energy and resources away from their human rights work. Through a consideration of statistical data reported by human rights organisations and face to face interviews with a cross section of human rights defenders, the article will map the incidence of judicial harassment in Zimbabwe. The article will consider the multi-level sociological and contextual factors which influence the Government of Zimbabwe to have easy recourse to criminal law and the debilitating effect of these actions on HRDs. These factors include the breakdown of the rule of law resulting in state capture of the judiciary, the proven efficacy of judicial harassment from colonial times to date, and the lack of an adequate redress mechanism at international level. By mapping the use of the judiciary as a tool of repression, from the inception of modern day Zimbabwe to date, it is hoped that HRDs will realise that they are part of a greater community of activists throughout the ages and should emboldened in the realisation that it is an age old tactic used by fallen regimes which should not deter them from calling for accountability.Keywords: autocratic regime, colonial legacy, judicial harassment, human rights defenders
Procedia PDF Downloads 233163 Determination of Genetic Markers, Microsatellites Type, Liked to Milk Production Traits in Goats
Authors: Mohamed Fawzy Elzarei, Yousef Mohammed Al-Dakheel, Ali Mohamed Alseaf
Abstract:
Modern molecular techniques, like single marker analysis for linked traits to these markers, can provide us with rapid and accurate genetic results. In the last two decades of the last century, the applications of molecular techniques were reached a faraway point in cattle, sheep, and pig. In goats, especially in our region, the application of molecular techniques is still far from other species. As reported by many researchers, microsatellites marker is one of the suitable markers for lie studies. The single marker linked to traits of interest is one technique allowed us to early select animals without the necessity for mapping the entire genome. Simplicity, applicability, and low cost of this technique gave this technique a wide range of applications in many areas of genetics and molecular biology. Also, this technique provides a useful approach for evaluating genetic differentiation, particularly in populations that are poorly known genetically. The expected breeding value (EBV) and yield deviation (YD) are considered as the most parameters used for studying the linkage between quantitative characteristics and molecular markers, since these values are raw data corrected for the non-genetic factors. A total of 17 microsatellites markers (from chromosomes 6, 14, 18, 20 and 23) were used in this study to search for areas that could be responsible for genetic variability for some milk traits and search of chromosomal regions that explain part of the phenotypic variance. Results of single-marker analyses were used to identify the linkage between microsatellite markers and variation in EBVs of these traits, Milk yield, Protein percentage, Fat percentage, Litter size and weight at birth, and litter size and weight at weaning. The estimates of the parameters from forward and backward solutions using stepwise regression procedure on milk yield trait, only two markers, OARCP9 and AGLA29, showed a highly significant effect (p≤0.01) in backward and forward solutions. The forward solution for different equations conducted that R2 of these equations were highly depending on only two partials regressions coefficient (βi,) for these markers. For the milk protein trait, four marker showed significant effect BMS2361, CSSM66 (p≤0.01), BMS2626, and OARCP9 (p≤0.05). By the other way, four markers (MCM147, BM1225, INRA006, andINRA133) showed highly significant effect (p≤0.01) in both backward and forward solutions in association with milk fat trait. For both litter size at birth and at weaning traits, only one marker (BM143(p≤0.01) and RJH1 (p≤0.05), respectively) showed a significant effect in backward and forward solutions. The estimates of the parameters from forward and backward solution using stepwise regression procedure on litter weight at birth (LWB) trait only one marker (MCM147) showed highly significant effect (p≤0.01) and two marker (ILSTS011, CSSM66) showed a significant effect (p≤0.05) in backward and forward solutions.Keywords: microsatellites marker, estimated breeding value, stepwise regression, milk traits
Procedia PDF Downloads 93162 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 269161 The Effects of the New Silk Road Initiatives and the Eurasian Union to the East-Central-Europe’s East Opening Policies
Authors: Tamas Dani
Abstract:
The author’s research explores the geo-economical role and importance of some small and medium sized states, reviews their adaption strategies in foreign trade and also in foreign affairs in the course of changing into a multipolar world, uses international background. With these, the paper analyses the recent years and the future of ‘Opening towards Eastern foreign economic policies’ from East-Central Europe and parallel with that the ‘Western foreign economy policies’ from Asia, as the Chinese One Belt One Road new silk route plans (so far its huge part is an infrastructural development plan to reach international trade and investment aims). It can be today’s question whether these ideas will reshape the global trade or not. How does the new silk road initiatives and the Eurasian Union reflect the effect of globalization? It is worth to analyse that how did Central and Eastern European countries open to Asia; why does China have the focus of the opening policies in many countries and why could China be seen as the ‘winner’ of the world economic crisis after 2008. The research is based on the following methodologies: national and international literature, policy documents and related design documents, complemented by processing of international databases, statistics and live interviews with leaders from East-Central European countries’ companies and public administration, diplomats and international traders. The results also illustrated by mapping and graphs. The research will find out as major findings whether the state decision-makers have enough margin for manoeuvres to strengthen foreign economic relations. This work has a hypothesis that countries in East-Central Europe have real chance to diversify their relations in foreign trade, focus beyond their traditional partners. This essay focuses on the opportunities of East-Central-European countries in diversification of foreign trade relations towards China and Russia in terms of ‘Eastern Openings’. The effects of the new silk road initiatives and the Eurasian Union to Hungary’s economy with a comparing outlook on East-Central European countries and exploring common regional cooperation opportunities in this area. The essay concentrate on the changing trade relations between East-Central-Europe and China as well as Russia, try to analyse the effects of the new silk road initiatives and the Eurasian Union also. In the conclusion part, it shows how the cooperation is necessary for the East-Central European countries if they want to have a non-asymmetric trade with Russia, China or some Chinese regions (Pearl River Delta, Hainan, …). The form of the cooperation for the East-Central European nations can be Visegrad 4 Cooperation (V4), Central and Eastern European Countries (CEEC16), 3 SEAS Cooperation (or BABS – Baltic, Adriatic, Black Seas Initiative).Keywords: China, East-Central Europe, foreign trade relations, geoeconomics, geopolitics, Russia
Procedia PDF Downloads 183160 The Quantum Theory of Music and Languages
Authors: Mballa Abanda Serge, Henda Gnakate Biba, Romaric Guemno Kuate, Akono Rufine Nicole, Petfiang Sidonie, Bella Sidonie
Abstract:
The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original and innovative research thesis. The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation and the question of modeling in the human sciences: mathematics, computer science, translation automation and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal and random music. The experimentation confirming the theorization, It designed a semi-digital, semi-analog application which translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music and deterministic and random music). To test this application, I use a music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). Translation is done (from writing to writing, from writing to speech and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz and world music or variety etc. The software runs, giving you the option to choose harmonies, and then you select your melody.Keywords: music, entanglement, langauge, science
Procedia PDF Downloads 82159 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 82158 Geospatial Technologies in Support of Civic Engagement and Cultural Heritage: Lessons Learned from Three Participatory Planning Workshops for Involving Local Communities in the Development of Sustainable Tourism Practices in Latiano, Brindisi
Authors: Mark Opmeer
Abstract:
The fruitful relationship between cultural heritage and digital technology is evident. Due to the development of user-friendly software, an increasing amount of heritage scholars use ict for their research activities. As a result, the implementation of information technology for heritage planning has become a research objective in itself. During the last decades, we have witnessed a growing debate and literature about the importance of computer technologies for the field of cultural heritage and ecotourism. Indeed, implementing digital technology in support of these domains can be very fruitful for one’s research practice. However, due to the rapid development of new software scholars may find it challenging to use these innovations in an appropriate way. As such, this contribution seeks to explore the interplay between geospatial technologies (geo-ict), civic engagement and cultural heritage and tourism. In this article, we discuss our findings on the use of geo-ict in support of civic participation, cultural heritage and sustainable tourism development in the southern Italian district of Brindisi. In the city of Latiano, three workshops were organized that involved local members of the community to distinguish and discuss interesting points of interests (POI’s) which represent the cultural significance and identity of the area. During the first workshop, a so called mappa della comunità was created on a touch table with collaborative mapping software, that allowed the participators to highlight potential destinations for tourist purposes. Furthermore, two heritage-based itineraries along a selection of identified POI’s was created to make the region attractive for recreants and tourists. These heritage-based itineraries reflect the communities’ ideas about the cultural identity of the region. Both trails were subsequently implemented in a dedicated mobile application (app) and was evaluated using a mixed-method approach with the members of the community during the second workshop. In the final workshop, the findings of the collaboration, the heritage trails and the app was evaluated with all participants. Based on our conclusions, we argue that geospatial technologies have a significant potential for involving local communities in heritage planning and tourism development. The participants of the workshops found it increasingly engaging to share their ideas and knowledge using the digital map of the touch table. Secondly, the use of a mobile application as instrument to test the heritage-based itineraries in the field was broadly considered as fun and beneficial for enhancing community awareness and participation in local heritage. The app furthermore stimulated the communities’ awareness of the added value of geospatial technologies for sustainable tourism development in the area. We conclude this article with a number of recommendations in order to provide a best practice for organizing heritage workshops with similar objectives.Keywords: civic engagement, geospatial technologies, tourism development, cultural heritage
Procedia PDF Downloads 288157 A Web-Based Real Property Updating System for Efficient and Sustainable Urban Development: A Case Study in Ethiopia
Authors: Eyosiyas Aga
Abstract:
The development of information communication technology has transformed the paper-based mapping and land registration processes to a computerized and networked system. The computerization and networking of real property information system play a vital role in good governance and sustainable development of emerging countries through cost effective, easy and accessible service delivery for the customer. The efficient, transparent and sustainable real property system is becoming the basic infrastructure for the urban development thus improve the data management system and service delivery in the organizations. In Ethiopia, the real property administration is paper based as a result, it confronted problems of data management, illegal transactions, corruptions, and poor service delivery. In order to solve this problem and to facilitate real property market, the implementation of web-based real property updating system is crucial. A web-based real property updating is one of the automation (computerizations) methods to facilitate data sharing, reduce time and cost of the service delivery in real property administration system. In additions, it is useful for the integration of data onto different information systems and organizations. This system is designed by combining open source software which supported by open Geo-spatial consortium. The web-based system is mainly designed by using open source software with the help of open Geo-spatial Consortium. The Open Geo-spatial Consortium standards such as the Web Feature Service and Web Map Services are the most widely used standards to support and improves web-based real property updating. These features allow the integration of data from different sources, and it can be used to maintain consistency of data throughout transactions. The PostgreSQL and Geoserver are used to manage and connect a real property data to the flex viewer and user interface. The system is designed for both internal updating system (municipality); which is mainly updating of spatial and textual information, and the external system (customer) which focus on providing and interacting with the customer. This research assessed the potential of open source web applications and adopted this technology for real property updating system in Ethiopia through simple, cost effective and secured way. The system is designed by combining and customizing open source software to enhance the efficiency of the system in cost effective way. The existing workflow for real property updating is analyzed to identify the bottlenecks, and the new workflow is designed for the system. The requirement is identified through questionnaire and literature review, and the system is prototype for the study area. The research mainly aimed to integrate human resource with technology in designing of the system to reduce data inconsistency and security problems. In additions, the research reflects on the current situation of real property administration and contributions of effective data management system for efficient, transparent and sustainable urban development in Ethiopia.Keywords: cadaster, real property, sustainable, transparency, web feature service, web map service
Procedia PDF Downloads 267156 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities
Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort
Abstract:
Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.Keywords: environmental radioactivity, Euratom, monitoring report, REMdb
Procedia PDF Downloads 444155 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki, Kyoka Sato
Abstract:
In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control
Procedia PDF Downloads 157154 The Impact of Online Learning on Visual Learners
Authors: Ani Demetrashvili
Abstract:
As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.Keywords: online learning, visual learners, digital education, technology in learning
Procedia PDF Downloads 40153 Calculation of Organ Dose for Adult and Pediatric Patients Undergoing Computed Tomography Examinations: A Software Comparison
Authors: Aya Al Masri, Naima Oubenali, Safoin Aktaou, Thibault Julien, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: The increased number of performed 'Computed Tomography (CT)' examinations raise public concerns regarding associated stochastic risk to patients. In its Publication 102, the ‘International Commission on Radiological Protection (ICRP)’ emphasized the importance of managing patient dose, particularly from repeated or multiple examinations. We developed a Dose Archiving and Communication System that gives multiple dose indexes (organ dose, effective dose, and skin-dose mapping) for patients undergoing radiological imaging exams. The aim of this study is to compare the organ dose values given by our software for patients undergoing CT exams with those of another software named "VirtualDose". Materials and methods: Our software uses Monte Carlo simulations to calculate organ doses for patients undergoing computed tomography examinations. The general calculation principle consists to simulate: (1) the scanner machine with all its technical specifications and associated irradiation cases (kVp, field collimation, mAs, pitch ...) (2) detailed geometric and compositional information of dozens of well identified organs of computational hybrid phantoms that contain the necessary anatomical data. The mass as well as the elemental composition of the tissues and organs that constitute our phantoms correspond to the recommendations of the international organizations (namely the ICRP and the ICRU). Their body dimensions correspond to reference data developed in the United States. Simulated data was verified by clinical measurement. To perform the comparison, 270 adult patients and 150 pediatric patients were used, whose data corresponds to exams carried out in France hospital centers. The comparison dataset of adult patients includes adult males and females for three different scanner machines and three different acquisition protocols (Head, Chest, and Chest-Abdomen-Pelvis). The comparison sample of pediatric patients includes the exams of thirty patients for each of the following age groups: new born, 1-2 years, 3-7 years, 8-12 years, and 13-16 years. The comparison for pediatric patients were performed on the “Head” protocol. The percentage of the dose difference were calculated for organs receiving a significant dose according to the acquisition protocol (80% of the maximal dose). Results: Adult patients: for organs that are completely covered by the scan range, the maximum percentage of dose difference between the two software is 27 %. However, there are three organs situated at the edges of the scan range that show a slightly higher dose difference. Pediatric patients: the percentage of dose difference between the two software does not exceed 30%. These dose differences may be due to the use of two different generations of hybrid phantoms by the two software. Conclusion: This study shows that our software provides a reliable dosimetric information for patients undergoing Computed Tomography exams.Keywords: adult and pediatric patients, computed tomography, organ dose calculation, software comparison
Procedia PDF Downloads 165152 Designing an Operational Control System for the Continuous Cycle of Industrial Technological Processes Using Fuzzy Logic
Authors: Teimuraz Manjapharashvili, Ketevani Manjaparashvili
Abstract:
Fuzzy logic is a modeling method for complex or ill-defined systems and is a relatively new mathematical approach. Its basis is to consider overlapping cases of parameter values and define operations to manipulate these cases. Fuzzy logic can successfully create operative automatic management or appropriate advisory systems. Fuzzy logic techniques in various operational control technologies have grown rapidly in the last few years. Fuzzy logic is used in many areas of human technological activity. In recent years, Fuzzy logic has proven its great potential, especially in the automation of industrial process control, where it allows the form of a control design based on the experience of experts and the results of experiments. The engineering of chemical technological processes uses fuzzy logic in optimal management, and it is also used in process control, including the operational control of continuous cycle chemical industrial, technological processes, where special features appear due to the continuous cycle and correct management acquires special importance. This paper discusses how intelligent systems can be developed, in particular, how Fuzzy logic can be used to build knowledge-based expert systems in chemical process engineering. The implemented projects reveal that the use of Fuzzy logic in technological process control has already given us better solutions than standard control techniques. Fuzzy logic makes it possible to develop an advisory system for decision-making based on the historical experience of the managing operator and experienced experts. The present paper deals with operational control and management systems of continuous cycle chemical technological processes, including advisory systems. Because of the continuous cycle, many features are introduced in them compared to the operational control of other chemical technological processes. Among them, there is a greater risk of transitioning to emergency mode; the return from emergency mode to normal mode must be done very quickly due to the impossibility of stopping the technological process due to the release of defective products during this period (i.e., receiving a loss), accordingly, due to the need for high qualification of the operator managing the process, etc. For these reasons, operational control systems of continuous cycle chemical technological processes have been specifically discussed, as they are different systems. Special features of such systems in control and management were brought out, which determine the characteristics of the construction of control and management systems. To verify the findings, the development of an advisory decision-making information system for operational control of a lime kiln using Fuzzy logic, based on the creation of a relevant expert-targeted knowledge base, was discussed. The control system has been implemented in a real lime production plant with a lime burn kiln, which has shown that suitable and intelligent automation improves operational management, reduces the risks of releasing defective products, and, therefore, reduces costs. The special advisory system was successfully used in the said plant both for the improvement of operational management and, if necessary, for the training of new operators due to the lack of an appropriate training institution.Keywords: chemical process control systems, continuous cycle industrial technological processes, fuzzy logic, lime kiln
Procedia PDF Downloads 30151 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 530150 Theorizing Optimal Use of Numbers and Anecdotes: The Science of Storytelling in Newsrooms
Authors: Hai L. Tran
Abstract:
When covering events and issues, the news media often employ both personal accounts as well as facts and figures. However, the process of using numbers and narratives in the newsroom is mostly operated through trial and error. There is a demonstrated need for the news industry to better understand the specific effects of storytelling and data-driven reporting on the audience as well as explanatory factors driving such effects. In the academic world, anecdotal evidence and statistical evidence have been studied in a mutually exclusive manner. Existing research tends to treat pertinent effects as though the use of one form precludes the other and as if a tradeoff is required. Meanwhile, narratives and statistical facts are often combined in various communication contexts, especially in news presentations. There is value in reconceptualizing and theorizing about both relative and collective impacts of numbers and narratives as well as the mechanism underlying such effects. The current undertaking seeks to link theory to practice by providing a complete picture of how and why people are influenced by information conveyed through quantitative and qualitative accounts. Specifically, the cognitive-experiential theory is invoked to argue that humans employ two distinct systems to process information. The rational system requires the processing of logical evidence effortful analytical cognitions, which are affect-free. Meanwhile, the experiential system is intuitive, rapid, automatic, and holistic, thereby demanding minimum cognitive resources and relating to the experience of affect. In certain situations, one system might dominate the other, but rational and experiential modes of processing operations in parallel and at the same time. As such, anecdotes and quantified facts impact audience response differently and a combination of data and narratives is more effective than either form of evidence. In addition, the present study identifies several media variables and human factors driving the effects of statistics and anecdotes. An integrative model is proposed to explain how message characteristics (modality, vividness, salience, congruency, position) and individual differences (involvement, numeracy skills, cognitive resources, cultural orientation) impact selective exposure, which in turn activates pertinent modes of processing, and thereby induces corresponding responses. The present study represents a step toward bridging theoretical frameworks from various disciplines to better understand the specific effects and the conditions under which the use of anecdotal evidence and/or statistical evidence enhances or undermines information processing. In addition to theoretical contributions, this research helps inform news professionals about the benefits and pitfalls of incorporating quantitative and qualitative accounts in reporting. It proposes a typology of possible scenarios and appropriate strategies for journalists to use when presenting news with anecdotes and numbers.Keywords: data, narrative, number, anecdote, storytelling, news
Procedia PDF Downloads 79149 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 177148 Basic Life Support Training in Rural Uganda: A Mixed Methods Study of Training and Attitudes towards Resuscitation
Authors: William Gallagher, Harriet Bothwell, Lowri Evans, Kevin Jones
Abstract:
Background: Worldwide, a third of adult deaths are caused by cardiovascular disease, a high proportion occurring in the developing world. Contributing to these poor outcomes are suboptimal assessments, treatments and monitoring of the acutely unwell patient. Successful training in trauma and neonates is recognised in the developing world but there is little literature supporting adult resuscitation. As far as the authors are aware no literature has been published on resuscitation training in Uganda since 2000 when a resuscitation training officer ran sessions in neonatal and paediatric resuscitation. The aim of this project was to offer training in Basic Life Support ( BLS) to staff and healthcare students based at Villa Maria Hospital in the Kalungu District, Central Uganda. This project was undertaken as a student selected component (SSC) offered by Swindon Academy, based at the Great Western Hospital, to medical students in their fourth year of the undergraduate programme. Methods: Semi-structured, informal interviews and focus groups were conducted with different clinicians in the hospital. These interviews were designed to focus on the level of training and understanding of BLS. A training session was devised which focused on BLS (excluding the use of an automatic external defribrillator) involving pre and post-training questionnaires and clinical assessments. Three training sessions were run for different cohorts: a pilot session for 5 Ugandan medical students, a second session for a group of 8 nursing and midwifery students and finally, a third was devised for physicians. The data collected was analysed in excel. Paired T-Tests determined statistical significance between pre and post-test scores and confidence before and after the sessions. Average clinical skill assessment scores were converted to percentages based on the area of BLS being assessed. Results: 27 participants were included in the analysis. 14 received ‘small group training’ whilst 13 received’ large group training’ 88% of all participants had received some form of resuscitation training. Of these, 46% had received theory training, 27% practical training and only 15% received both. 12% had received no training. On average, all participants demonstrated a significant increase of 5.3 in self-assessed confidence (p <0.05). On average, all participants thought the session was very useful. Analysis of qualitative date from clinician interviews in ongoing but identified themes identified include rescue breaths being considered the most important aspect resuscitation and doubts of a ‘good’ outcome from resuscitation. Conclusions: The results of this small study reflect the need for regular formal training in BLS in low resource settings. The active engagement and positive opinions concerning the utility of the training are promising as well as the evidence of improvement in knowledge.Keywords: basic life support, education, resuscitation, sub-Saharan Africa, training, Uganda
Procedia PDF Downloads 150147 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame
Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin
Abstract:
The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.Keywords: FACTS, multi-space-time frame, optimal control, TCSC
Procedia PDF Downloads 267146 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 68145 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014
Authors: R. Mofeed, N. Elgendy
Abstract:
Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.Keywords: cinema, informal urbanism, popular mind, representation
Procedia PDF Downloads 297144 A Geographical Information System Supported Method for Determining Urban Transformation Areas in the Scope of Disaster Risks in Kocaeli
Authors: Tayfun Salihoğlu
Abstract:
Following the Law No: 6306 on Transformation of Disaster Risk Areas, urban transformation in Turkey found its legal basis. In the best practices all over the World, the urban transformation was shaped as part of comprehensive social programs through the discourses of renewing the economic, social and physical degraded parts of the city, producing spaces resistant to earthquakes and other possible disasters and creating a livable environment. In Turkish practice, a contradictory process is observed. In this study, it is aimed to develop a method for better understanding of the urban space in terms of disaster risks in order to constitute a basis for decisions in Kocaeli Urban Transformation Master Plan, which is being prepared by Kocaeli Metropolitan Municipality. The spatial unit used in the study is the 50x50 meter grids. In order to reflect the multidimensionality of urban transformation, three basic components that have spatial data in Kocaeli were identified. These components were named as 'Problems in Built-up Areas', 'Disaster Risks arising from Geological Conditions of the Ground and Problems of Buildings', and 'Inadequacy of Urban Services'. Each component was weighted and scored for each grid. In order to delimitate urban transformation zones Optimized Outlier Analysis (Local Moran I) in the ArcGIS 10.6.1 was conducted to test the type of distribution (clustered or scattered) and its significance on the grids by assuming the weighted total score of the grid as Input Features. As a result of this analysis, it was found that the weighted total scores were not significantly clustering at all grids in urban space. The grids which the input feature is clustered significantly were exported as the new database to use in further mappings. Total Score Map reflects the significant clusters in terms of weighted total scores of 'Problems in Built-up Areas', 'Disaster Risks arising from Geological Conditions of the Ground and Problems of Buildings' and 'Inadequacy of Urban Services'. Resulting grids with the highest scores are the most likely candidates for urban transformation in this citywide study. To categorize urban space in terms of urban transformation, Grouping Analysis in ArcGIS 10.6.1 was conducted to data that includes each component scores in significantly clustered grids. Due to Pseudo Statistics and Box Plots, 6 groups with the highest F stats were extracted. As a result of the mapping of the groups, it can be said that 6 groups can be interpreted in a more meaningful manner in relation to the urban space. The method presented in this study can be magnified due to the availability of more spatial data. By integrating with other data to be obtained during the planning process, this method can contribute to the continuation of research and decision-making processes of urban transformation master plans on a more consistent basis.Keywords: urban transformation, GIS, disaster risk assessment, Kocaeli
Procedia PDF Downloads 120143 Neutrophil-to-Lymphocyte Ratio: A Predictor of Cardiometabolic Complications in Morbid Obese Girls
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is a low-grade inflammatory state. Childhood obesity is a multisystem disease, which is associated with a number of complications as well as potentially negative consequences. Gender is an important universal risk factor for many diseases. Hematological indices differ significantly by gender. This should be considered during the evaluation of obese children. The aim of this study is to detect hematologic indices that differ by gender in morbid obese (MO) children. A total of 134 MO children took part in this study. The parents filled an informed consent form and the approval from the Ethics Committee of Namik Kemal University was obtained. Subjects were divided into two groups based on their genders (64 females aged 10.2±3.1 years and 70 males aged 9.8±2.2 years; p ≥ 0.05). Waist-to-hip as well as head-to-neck ratios and body mass index (BMI) values were calculated. The children, whose WHO BMI-for age and sex percentile values were > 99 percentile, were defined as MO. Hematological parameters [haemoglobin, hematocrit, erythrocyte count, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell distribution width, leukocyte count, neutrophil %, lymphocyte %, monocyte %, eosinophil %, basophil %, platelet count, platelet distribution width, mean platelet volume] were determined by the automatic hematology analyzer. SPSS was used for statistical analyses. P ≤ 0.05 was the degree for statistical significance. The groups included children having mean±SD value of BMI as 26.9±3.4 kg/m2 for males and 27.7±4.4 kg/m2 for females (p ≥ 0.05). There was no significant difference between ages of females and males (p ≥ 0.05). Males had significantly increased waist-to-hip ratios (0.95±0.08 vs 0.91±0.08; p=0.005) and mean corpuscular hemoglobin concentration values (33.6±0.92 vs 33.1±0.83; p=0.001) compared to those of females. Significantly elevated neutrophil (4.69±1.59 vs 4.02±1.42; p=0.011) and neutrophil-to-lymphocyte ratios (1.70±0.71 vs 1.39±0.48; p=0.004) were detected in females. There was no statistically significant difference between groups in terms of C-reactive protein values (p ≥ 0.05). Adipose tissue plays important roles during the development of obesity and associated diseases such as metabolic syndrom and cardiovascular diseases (CVDs). These diseases may cause changes in complete blood cell count parameters. These alterations are even more important during childhood. Significant gender effects on the changes of neutrophils, one of the white blood cell subsets, were observed. The findings of the study demonstrate the importance of considering gender in clinical studies. The males and females may have distinct leukocyte-trafficking profiles in inflammation. Female children had more circulating neutrophils, which may be the indicator of an increased risk of CVDs, than male children within this age range during the late stage of obesity. In recent years, females represent about half of deaths from CVDs; therefore, our findings may be the indicator of the increasing tendency of this risk in females starting from childhood.Keywords: children, gender, morbid obesity, neutrophil-to-lymphocyte ratio
Procedia PDF Downloads 273