Search results for: indirect method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19453

Search results for: indirect method

1123 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties

Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier

Abstract:

The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.

Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA

Procedia PDF Downloads 66
1122 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 12
1121 Bi-Directional Impulse Turbine for Thermo-Acoustic Generator

Authors: A. I. Dovgjallo, A. B. Tsapkova, A. A. Shimanov

Abstract:

The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion.

Keywords: acoustic power, bi-directional pulse turbine, linear alternator, thermoacoustic generator

Procedia PDF Downloads 378
1120 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells

Procedia PDF Downloads 64
1119 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cells (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂, and two different ligands, namely oleic acid (OA)@oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA@OAm and DDAB were studied. For this purpose, ITO/PQDs, as well as ITO/PQDs/MAPI perovskite structures, were prepared by spin coating, and the effect of the ligand and oxygen plasma treatment was analysed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA@OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA@OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA@OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behaviour of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., perovskite solar cells

Procedia PDF Downloads 70
1118 Wrist Pain, Technological Device Used, and Perceived Academic Performance Among the College of Computer Studies Students

Authors: Maquiling Jhuvie Jane R., Ojastro Regine B., Peroja Loreille Marie B., Pinili Joy Angela., Salve Genial Gail M., Villavicencio Marielle Irene B., Yap Alther Francis Garth B.

Abstract:

Introduction: This study investigated the impact of prolonged device usage on wrist pain and perceived academic performance among college students in Computer Studies. The research aims to explore the correlation between the frequency of technological device use and the incidence of wrist pain, as well as how this pain affects students' academic performance. The study seeks to provide insights that could inform interventions to promote better musculoskeletal health among students engaged in intensive technology use to further improve their academic performance. Method: The study utilized descriptive-correlational and comparative design, focusing on bona fide students from Silliman University’s College of Computer Studies during the second semester of 2023-2024. Participants were recruited through a survey sent via school email, with responses collected until March 30, 2024. Data was gathered using a password-protected device and Google Forms, ensuring restricted access to raw data. The demographic profile was summarized, and the prevalence of wrist pain and device usage were analyzed using percentages and weighted means. Statistical analyses included Spearman’s rank correlation coefficient to assess the relationship between wrist pain and device usage and an Independent T-test to evaluate differences in academic performance based on wrist pain presence. Alpha was set at 0.05. Results: The study revealed that 40% of College of Computer Studies students experience wrist pain, with 2 out of every 5 students affected. Laptops and desktops were the most frequently used devices for academic work, achieving a weighted mean of 4.511, while mobile phones and tablets received lower means of 4.183 and 1.911, respectively. The average academic performance score among students was 29.7, classified as ‘Good Performance.’ Notably, there was no significant relationship between the frequency of device usage and wrist pain, as indicated by p-values exceeding 0.05. However, a significant difference in perceived academic performance was observed, with students without wrist pain scoring an average of 30.39 compared to 28.72 for those with wrist pain and a p-value of 0.0134 confirming this distinction. Conclusion: The study revealed that about 40% of students in the College of Computer Studies experience wrist pain, but there is no significant link between device usage and pain occurrence. However, students without wrist pain demonstrated better academic performance than those with pain, suggesting that wrist health may impact academic success. These findings imply that physical therapy practices in the Philippines should focus on preventive strategies and ergonomic education to improve student health and performance.

Keywords: wrist pain, frequency of use of technological devices, perceived academic performance, physical therapy

Procedia PDF Downloads 14
1117 Accessibility of Social Justice through Social Security in Indian Organisations: Analysis Based on Workforce

Authors: Neelima Rashmi Lakra

Abstract:

India was among one of the highly developed economy up to 1850 due to its cottage industries. During the end of the 18th century, modern industrial enterprises began with the first cotton mill in Bombay, the jute mill near Calcutta and the coal mine in Raniganj. This was counted as the real beginning of industry in 1854 in India. Prior to this period people concentrated only to agriculture, menial service or handicraft, and the introduction of industries exposed them to the disciplines of factory which was very tedious for them. With increasing number of factories been setup adding on to mining and introduction of railway, World War Period (1914-19), Second World War Period (1939-45) and the Great Depression (1929-33) there were visible change in the nature of work for the people, which resulted in outburst of strike for various reasons in these factories. Here, with India’s independence there was emergence of public sector industries and labour legislations were introduced. Meanwhile, trade unions came to notice to the rescue of the oppressed but failed to continue till long. Soon after, with the New Economic Policy organisations came across to face challenges to perform their best, where social justice for the workmen was in question. On these backdrops, studies were found discussing the central human capabilities which could be addressed through Social Security schemes. Therefore, this study was taken up to look at the reforms and legislations mainly meant for the welfare of the labour. This paper will contribute to the large number of Indian population who are serving in public sectors in India since the introduction of industries and will complement the issue of social justice through social security measures among this huge crowd serving the nation. The objectives of the study include; to find out what labour Legislations have already been existing in India, the role of Trade Union Movement, to look at the effects of New Economic Policy on these reforms and its effects and measures taken for the workforce employed in the public sectors and finally, if these measures fulfil the social justice aspects for the larger society on whole. The methodology followed collection of data from books, journal articles, reports, company reports and manuals focusing mainly on Indian studies and the data was analysed following content analysis method. The findings showed the measures taken for Social Security, but there were also reflections of very few particular additions or amendments to these Acts and provisions with the onset of New Liberalisation Policy. Therefore, the study concluded examining the social justice aspects in the context of a developing economy and discussing the recommendations.

Keywords: public sectors, social justice, social security schemes, trade union movement

Procedia PDF Downloads 450
1116 Structure Conduct and Performance of Rice Milling Industry in Sri Lanka

Authors: W. A. Nalaka Wijesooriya

Abstract:

The increasing paddy production, stabilization of domestic rice consumption and the increasing dynamism of rice processing and domestic markets call for a rethinking of the general direction of the rice milling industry in Sri Lanka. The main purpose of the study was to explore levels of concentration in rice milling industry in Polonnaruwa and Hambanthota which are the major hubs of the country for rice milling. Concentration indices reveal that the rice milling industry in Polonnaruwa operates weak oligopsony and is highly competitive in Hambanthota. According to the actual quantity of paddy milling per day, 47 % is less than 8Mt/Day, while 34 % is 8-20 Mt/day, and the rest (19%) is greater than 20 Mt/day. In Hambanthota, nearly 50% of the mills belong to the range of 8-20 Mt/day. Lack of experience of the milling industry, poor knowledge on milling technology, lack of capital and finding an output market are the major entry barriers to the industry. Major problems faced by all the rice millers are the lack of a uniform electricity supply and low quality paddy. Many of the millers emphasized that the rice ceiling price is a constraint to produce quality rice. More than 80% of the millers in Polonnaruwa which is the major parboiling rice producing area have mechanical dryers. Nearly 22% millers have modern machineries like color sorters, water jet polishers. Major paddy purchasing method of large scale millers in Polonnaruwa is through brokers. In Hambanthota major channel is miller purchasing from paddy farmers. Millers in both districts have major rice selling markets in Colombo and suburbs. Huge variation can be observed in the amount of pledge (for paddy storage) loans. There is a strong relationship among the storage ability, credit affordability and the scale of operation of rice millers. The inter annual price fluctuation ranged 30%-35%. Analysis of market margins by using series of secondary data shows that farmers’ share on rice consumer price is stable or slightly increases in both districts. In Hambanthota a greater share goes to the farmer. Only four mills which have obtained the Good Manufacturing Practices (GMP) certification from Sri Lanka Standards Institution can be found. All those millers are small quantity rice exporters. Priority should be given for the Small and medium scale millers in distribution of storage paddy of PMB during the off season. The industry needs a proper rice grading system, and it is recommended to introduce a ceiling price based on graded rice according to the standards. Both husk and rice bran were underutilized. Encouraging investment for establishing rice oil manufacturing plant in Polonnaruwa area is highly recommended. The current taxation procedure needs to be restructured in order to ensure the sustainability of the industry.

Keywords: conduct, performance, structure (SCP), rice millers

Procedia PDF Downloads 328
1115 Freight Forwarders’ Liability: A Need for Revival of Unidroit Draft Convention after Six Decades

Authors: Mojtaba Eshraghi Arani

Abstract:

The freight forwarders, who are known as the Architect of Transportation, play a vital role in the supply chain management. The package of various services which they provide has made the legal nature of freight forwarders very controversial, so that they might be qualified once as principal or carrier and, on other occasions, as agent of the shipper as the case may be. They could even be involved in the transportation process as the agent of shipping line, which makes the situation much more complicated. The courts in all countries have long had trouble in distinguishing the “forwarder as agent” from “forwarder as principal” (as it is outstanding in the prominent case of “Vastfame Camera Ltd v Birkart Globistics Ltd And Others” 2005, Hong Kong). It is not fully known that in the case of a claim against the forwarder, what particular parameter would be used by the judge among multiple, and sometimes contradictory, tests for determining the scope of the forwarder liability. In particular, every country has its own legal parameters for qualifying the freight forwarders that is completely different from others, as it is the case in France in comparison with Germany and England. The unpredictability of the courts’ decisions in this regard has provided the freight forwarders with the opportunity to impose any limitation or exception of liability while pretending to play the role of a principal, consequently making the cargo interests incur ever-increasing damage. The transportation industry needs to remove such uncertainty by unifying national laws governing freight forwarders liability. A long time ago, in 1967, The International Institute for Unification of Private Law (UNIDROIT) prepared a draft convention called “Draft Convention on Contract of Agency for Forwarding Agents Relating to International Carriage of Goods” (hereinafter called “UNIDROIT draft convention”). The UNIDROIT draft convention provided a clear and certain framework for the liability of freight forwarder in each capacity as agent or carrier, but it failed to transform to a convention, and eventually, it was consigned to oblivion. Today, after nearly 6 decades from that era, the necessity of such convention can be felt apparently. However, one might reason that the same grounds, in particular, the resistance by forwarders’ association, FIATA, exist yet, and thus it is not logical to revive a forgotten draft convention after such long period of time. It is argued in this article that the main reason for resisting the UNIDROIT draft convention in the past was pending efforts for developing the “1980 United Nation Convention on International Multimodal Transport of Goods”. However, the latter convention failed to become in force on due time in a way that there was no new accession since 1996, as a result of which the UNIDROIT draft convention must be revived strongly and immediately submitted to the relevant diplomatic conference. A qualitative method with the concept of interpretation of data collection has been used in this manuscript. The source of the data is the analysis of international conventions and cases.

Keywords: freight forwarder, revival, agent, principal, uidroit, draft convention

Procedia PDF Downloads 74
1114 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 223
1113 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending

Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim

Abstract:

Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.

Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions

Procedia PDF Downloads 104
1112 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers

Authors: Sumanta Daw, Gopal Chandra Saha

Abstract:

The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.

Keywords: cardio-respiratory efficiency, spirometry, water polo players, sprinters

Procedia PDF Downloads 134
1111 Challenges Faced by the Parents of Mentally Challenged Children in India

Authors: Chamaraja Parulli

Abstract:

Family is an important social institution devoted to the growth of a child, and parents are the important agents of socialization. Mentally challenged children are those who are affected by intellectual disability, which is manifested by limitation in intellectual functioning and adoptive behavior. Intellectual disability affects about 3-4 percentage of the general population. Intellectual disability is caused by genetic condition, problems during pregnancy, problems during childbirth, or illness. Mental retardation is the world’s most complex and challenging issue. The stigmatization of disability results in social and economic marginalization. Parents of the mentally challenged children will have a very high level of parenting stress, which is significantly more than the stress perceived by the parents of the children without disability. The prevalence of severe mental disorder called Schizophrenia is among 1.1 percent of the total population in India. On the other hand, 11 to 12 percent is the overall lifetime occurrence rate of mental disorders. While the government has a separate program for mental health, the segment is marred by lack of adequate doctors and infrastructure. Mentally retarded children have certain limitations in mental functioning and skills, which makes them slow learners in speaking, walking, and taking care of their personal needs such as dressing and eating. Accepting a child with mental handicap becomes difficult for parents and to the whole family, as they have to face many problems, including those of management, finance, deprivation of rest, and leisure. Also, the problems faced by the parents can be seen in different areas like – educational, psychological, social, emotional, financial and family related issues. The study brought out various difficulties and problems faced by the parents as well as family members. The findings revealed that the mental retardation is not only a medico-psychological problem but also a socio-cultural problem. The study results, however, indicate that the quality of life of the family having children with mental retardation can be improved to a greater extent by building up a child-friendly ambience at home. The main aim of the present study is to assess the problems faced by the parents of mentally challenged children, with the help of personal interview data collected from the parents of mentally challenged children, residing in Shimoga District of Karnataka State, India. These individuals were selected using stratified random sampling method. Organizing effective intervention programs for parents, family, society, and educational institutions towards reduction of family stress, augmenting the family’s strengths, increasing child’s competence and enhancing the positive attitudes and values of the society will go a long way for the peaceful existence of the mentally challenged children.

Keywords: mentally challenged children, intellectual disability, special children, social infrastructure, differently abled, psychological stress, marginalization

Procedia PDF Downloads 109
1110 The Effect of Group Counseling on the Victimhood Perceptions of Adolescent Who Are the Subject of Peer Victimization and on Their Coping Strategies

Authors: İsmail Seçer, Taştan Seçer

Abstract:

In this study, the effect of the group counseling on the victimhood perceptions of the primary school 7th and 8th grade students who are determined to be the subject of peer victimization and their dealing way with it was analyzed. The research model is Solomon Four Group Experimental Model. In this model, there are four groups that were determined with random sampling. Two of the groups have been used as experimental group and the other two have been used as control group. Solomon model is defined as real experimental model. In real experimental models, there are multiple groups consisting of subject which have similar characteristics, and selection of the subjects is done with random sampling. For this purpose, 230 students from Kültür Kurumu Primary School in Erzurum were asked to fill Adolescent Peer Victim Form. 100 students whose victim scores were higher and who were determined to be the subject of bullying were talked face to face and informed about the current study, and they were asked if they were willing to participate or not. As a result of these interviews, 60 students were determined to participate in the experimental study and four group consisting of 15 people were created with simple random sampling method. After the groups had been formed, experimental and control group were determined with casting lots. After determining experimental and control groups, an 11-session group counseling activity which was prepared by the researcher according to the literature was applied. The purpose of applying group counseling is to change the ineffective dealing ways with bullying and their victimhood perceptions. Each session was planned to be 75 minutes and applied as planned. In the control groups, counseling activities in the primary school counseling curricula was applied for 11 weeks. As a result of the study, physical, emotional and verbal victimhood perceptions of the participants in the experimental groups were decreased significantly compared to pre-experimental situations and to those in control group. Besides, it was determined that this change observed in the victimhood perceptions of the experimental group occurred independently from the effect of variables such as gender, age and academic success. The first evidence of the study related to the dealing ways is that the scores of the participants in the experimental group related to the ineffective dealing ways such as despair and avoidance is decreased significantly compared to the pre-experimental situation and to those in control group. The second evidence related to the dealing ways is that the scores of the participants in the experimental group related to effective dealing ways such as seeking for help, consulting social support, resistance and optimism is increased significantly compared to the pre-experimental situation and to those in control group. According to the evidence obtained through the study, it can be said that group counseling is an effective approach to change the victimhood perceptions of the individuals who are the subject of bullying and their dealing strategies with it.

Keywords: bullying, perception of victimization, coping strategies, ancova analysis

Procedia PDF Downloads 391
1109 Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning

Authors: Valliyil Govindankutty

Abstract:

Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival.

Keywords: Karez, groundwater, traditional water harvesting, cultural heritage landscape, urban planning

Procedia PDF Downloads 494
1108 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 149
1107 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 89
1106 Study of the Possibility of Adsorption of Heavy Metal Ions on the Surface of Engineered Nanoparticles

Authors: Antonina A. Shumakova, Sergey A. Khotimchenko

Abstract:

The relevance of research is associated, on the one hand, with an ever-increasing volume of production and the expansion of the scope of application of engineered nanomaterials (ENMs), and on the other hand, with the lack of sufficient scientific information on the nature of the interactions of nanoparticles (NPs) with components of biogenic and abiogenic origin. In particular, studying the effect of ENMs (TiO2 NPs, SiO2 NPs, Al2O3 NPs, fullerenol) on the toxicometric characteristics of common contaminants such as lead and cadmium is an important hygienic task, given the high probability of their joint presence in food products. Data were obtained characterizing a multidirectional change in the toxicity of model toxicants when they are co-administered with various types of ENMs. One explanation for this fact is the difference in the adsorption capacity of ENMs, which was further studied in in vitro studies. For this, a method was proposed based on in vitro modeling of conditions simulating the environment of the small intestine. It should be noted that the obtained data are in good agreement with the results of in vivo experiments: - with the combined administration of lead and TiO2 NPs, there were no significant changes in the accumulation of lead in rat liver; in other organs (kidneys, spleen, testes and brain), the lead content was lower than in animals of the control group; - studying the combined effect of lead and Al2O3 NPs, a multiple and significant increase in the accumulation of lead in rat liver was observed with an increase in the dose of Al2O3 NPs. For other organs, the introduction of various doses of Al2O3 NPs did not significantly affect the bioaccumulation of lead; - with the combined administration of lead and SiO2 NPs in different doses, there was no increase in lead accumulation in all studied organs. Based on the data obtained, it can be assumed that at least three scenarios of the combined effects of ENMs and chemical contaminants on the body: - ENMs quite firmly bind contaminants in the gastrointestinal tract and such a complex becomes inaccessible (or inaccessible) for absorption; in this case, it can be expected that the toxicity of both ENMs and contaminants will decrease; - the complex formed in the gastrointestinal tract has partial solubility and can penetrate biological membranes and / or physiological barriers of the body; in this case, ENMs can play the role of a kind of conductor for contaminants and, thus, their penetration into the internal environment of the body increases, thereby increasing the toxicity of contaminants; - ENMs and contaminants do not interact with each other in any way, therefore the toxicity of each of them is determined only by its quantity and does not depend on the quantity of another component. Authors hypothesized that the degree of adsorption of various elements on the surface of ENMs may be a unique characteristic of their action, allowing a more accurate understanding of the processes occurring in a living organism.

Keywords: absorption, cadmium, engineered nanomaterials, lead

Procedia PDF Downloads 87
1105 The Impact of Artificial Intelligence on Food Industry

Authors: George Hanna Abdelmelek Henien

Abstract:

Quality and safety issues are common in Ethiopia's food processing industry, which can negatively impact consumers' health and livelihoods. The country is known for its various agricultural products that are important to the economy. However, food quality and safety policies and management practices in the food processing industry have led to many health problems, foodborne illnesses and economic losses. This article aims to show the causes and consequences of food safety and quality problems in the food processing industry in Ethiopia and discuss possible solutions to solve them. One of the main reasons for food quality and safety in Ethiopia's food processing industry is the lack of adequate regulation and enforcement mechanisms. Inadequate food safety and quality policies have led to inefficiencies in food production. Additionally, the failure to monitor and enforce existing regulations has created a good opportunity for unscrupulous companies to engage in harmful practices that endanger the lives of citizens. The impact on food quality and safety is significant due to loss of life, high medical costs, and loss of consumer confidence in the food processing industry. Foodborne diseases such as diarrhoea, typhoid and cholera are common in Ethiopia, and food quality and safety play an important role in . Additionally, food recalls due to contamination or contamination often cause significant economic losses in the food processing industry. To solve these problems, the Ethiopian government began taking measures to improve food quality and safety in the food processing industry. One of the most prominent initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to monitor and control the quality and safety of food and beverage products in the country. EFDA has implemented many measures to improve food safety, such as carrying out routine inspections, monitoring the import of food products and implementing labeling requirements. Another solution that can improve food quality and safety in the food processing industry in Ethiopia is the implementation of food safety management system (FSMS). FSMS is a set of procedures and policies designed to identify, assess and control food safety risks during food processing. Implementing a FSMS can help companies in the food processing industry identify and address potential risks before they harm consumers. Additionally, implementing an FSMS can help companies comply with current safety and security regulations. Consequently, improving food safety policy and management system in Ethiopia's food processing industry is important to protect people's health and improve the country's economy. . Addressing the root causes of food quality and safety and implementing practical solutions that can help improve the overall food safety and quality in the country, such as establishing regulatory bodies and implementing food management systems.

Keywords: food quality, food safety, policy, management system, food processing industry food traceability, industry 4.0, internet of things, block chain, best worst method, marcos

Procedia PDF Downloads 63
1104 Association between TNF-α and Its Receptor TNFRSF1B Polymorphism with Pulmonary Tuberculosis in Tomsk, Russia Federation

Authors: K. A. Gladkova, N. P. Babushkina, E. Y. Bragina

Abstract:

Purpose: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the major public health problems worldwide. It is clear that the immune response to M. tuberculosis infection is a relationship between inflammatory and anti-inflammatory responses in which Tumour Necrosis Factor-α (TNF-α) plays key roles as a pro-inflammatory cytokine. TNF-α involved in various cell immune responses via binding to its two types of membrane-bound receptors, TNFRSF1A and TNFRSF1B. Importantly, some variants of the TNFRSF1B gene have been considered as possible markers of host susceptibility to TB. However, the possible impact of such TNF-α and its receptor genes polymorphism on TB cases in Tomsk is missing. Thus, the purpose of our study was to investigate polymorphism of TNF-α (rs1800629) and its receptor TNFRSF1B (rs652625 and rs525891) genes in population of Tomsk and to evaluate their possible association with the development of pulmonary TB. Materials and Methods: The population distribution features of genes polymorphisms were investigated and made case-control study based on group of people from Tomsk. Human blood was collected during routine patients examination at Tomsk Regional TB Dispensary. Altogether, 234 TB-positive patients (80 women, 154 men, average age is 28 years old) and 205 health-controls (153 women, 52 men, average age is 47 years old) were investigated. DNA was extracted from blood plasma by phenol-chloroform method. Genotyping was carried out by a single-nucleotide-specific real-time PCR assay. Results: First, interpopulational comparison was carried out between healthy individuals from Tomsk and available data from the 1000 Genomes project. It was found that polymorphism rs1800629 region demonstrated that Tomsk population was significantly different from Japanese (P = 0.0007), but it was similar with the following Europeans subpopulations: Italians (P = 0.052), Finns (P = 0.124) and British (P = 0.910). Polymorphism rs525891 clear demonstrated that group from Tomsk was significantly different from population of South Africa (P = 0.019). However, rs652625 demonstrated significant differences from Asian population: Chinese (P = 0.03) and Japanese (P = 0.004). Next, we have compared healthy individuals versus patients with TB. It was detected that no association between rs1800629, rs652625 polymorphisms, and positive TB cases. Importantly, AT genotype of polymorphism rs525891 was significantly associated with resistance to TB (odds ratio (OR) = 0.61; 95% confidence interval (CI): 0.41-0.9; P < 0.05). Conclusion: To the best of our knowledge, the polymorphism of TNFRSF1B (rs525891) was associated with TB, while genotype AT is protective [OR = 0.61] in Tomsk population. In contrast, no significant correlation was detected between polymorphism TNF-α (rs1800629) and TNFRSF1B (rs652625) genes and alveolar TB cases among population of Tomsk. In conclusion, our data expands the molecular particularities associated with TB. The study was supported by the grant of the Russia for Basic Research #15-04-05852.

Keywords: polymorphism, tuberculosis, TNF-α, TNFRSF1B gene

Procedia PDF Downloads 180
1103 Person-Centered Approaches in Face-to-Face Interventions to Support Enrolment in Cardiac Rehabilitation: A Scoping Review Study

Authors: Birgit Rasmussen, Thomas Maribo, Bente S. Toft

Abstract:

BACKGROUND: Cardiac rehabilitation is the standard treatment for ischemic heart disease. Cardiac rehabilitation improves quality of life, reduces mortality and the risk of readmission, and provides patients with valuable knowledge and encouragement from peers and staff. Still, less than half of eligible patients enroll. Face-to-face interventions have the potential to support patients' decision-making and increase enrolment in cardiac rehabilitation. However, we lack knowledge of the content and characteristics of interventions. AIM: The aim was to outline and evaluate the content and characteristics of studies that have reported on face-to-face interventions to encourage enrolment in cardiac rehabilitation in patients with ischemic heart disease. METHOD: This scoping review followed the Joanne Briggs Institute methodology. Based on an a-priori protocol that defined the systematic search criteria, six databases were searched for studies published between 2001 and 2023. Two reviewers independently screened and selected studies. All authors discussed the summarized data prior to the narrative presentation. RESULTS: After screening and full text review of 5583 records, 20 studies of heterogeneous design and content were included. Four studies described the key contents in face-to-face interventions to be education, support of autonomy, addressing reasons for change, and emotional and cognitive support while showing understanding. Two studies used motivational interviewing to target patients' experiences and address worries and anticipated difficulties. Four quantitative studies found associations between enrolment and intention to attend, cardiac rehabilitation barriers, exercise self-efficacy, and perceived control. When patients asked questions, enrolment rates were higher, while providing reassurance and optimism could lead to non-attendance if patients had a high degree of worry. In qualitative studies, support to overcome barriers and knowledge about health benefits from participation in cardiac rehabilitation facilitated enrolment. Feeling reassured that the cardiac condition was good could lead to non-attendance. DISCUSSION AND CONCLUSION: To support patients' enrolment in cardiac rehabilitation, it is recommended that interventions integrate a person-centered dialogue. Individual worries and barriers to cardiac rehabilitation should be jointly explored. When talking with patients for whom worries predominate, the recommendation is to focus on the patients' perspectives and avoid too much focus on reassurance and problem-solving. The patients' perspectives, the mechanisms of change, and the process evaluation of the intervention including person-centeredness are relevant to include in future studies.

Keywords: ischemic heart disease, cardiac rehabilitation, enrolment, person-centered, in-hospital interventions

Procedia PDF Downloads 67
1102 Combained Cultivation of Endemic Strains of Lactic Acid Bacteria and Yeast with Antimicrobial Properties

Authors: A. M. Isakhanyan, F. N. Tkhruni, N. N. Yakimovich, Z. I. Kuvaeva, T. V. Khachatryan

Abstract:

Introduction: At present, the simbiotics based on different genera and species of lactic acid bacteria (LAB) and yeasts are used. One of the basic properties of probiotics is presence of antimicrobial activity and therefore selection of LAB and yeast strains for their co-cultivation with the aim of increasing of the activity is topical. Since probiotic yeast and bacteria have different mechanisms of action, natural synergies between species, higher viability and increasing of antimicrobial activity might be expected from mixing both types of probiotics. Endemic strains of LAB Enterococcus faecium БТK-64, Lactobaccilus plantarum БТK-66, Pediococcus pentosus БТK-28, Lactobacillus rhamnosus БТK-109 and Kluyveromyces lactis БТX-412, Saccharomycopsis sp. БТX- 151 strains of yeast, with probiotic properties and hight antimicrobial activity, were selected. Strains are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB and yeast strains were isolated from different dairy products from rural households of Armenia. The genotyping by 16S rRNA sequencing for LAB and 26S RNA sequencing for yeast were used. Combined cultivation of LAB and yeast strains was carried out in the nutrient media on the basis of milk whey, in anaerobic conditions (without shaker, in a thermostat at 37oC, 48 hours). The complex preparations were obtained by purification of cell free culture broth (CFC) broth by the combination of ion-exchange chromatography and gel filtration methods. The spot-on-lawn method was applied for determination of antimicrobial activity and expressed in arbitrary units (AU/ml). Results. The obtained data showed that at the combined growth of bacteria and yeasts, the cultivation conditions (medium composition, time of growth, genera of LAB and yeasts) affected the display of antimicrobial activity. Purification of CFC broth allowed obtaining partially purified antimicrobial complex preparation which contains metabiotics from both bacteria and yeast. The complex preparation inhibited the growth of pathogenic and conditionally pathogenic bacteria, isolated from various internal organs from diseased animals and poultry with greater efficiency than the preparations derived individually alone from yeast and LAB strains. Discussion. Thus, our data shown perspectives of creation of a new class of antimicrobial preparations on the basis of combined cultivation of endemic strains of LAB and yeast. Obtained results suggest the prospect of use of the partially purified complex preparations instead antibiotics in the agriculture and for food safety. Acknowledgments: This work was supported by the RA MES State Committee of Science and Belarus National Foundation for Basic Research in the frames of the joint Armenian - Belarusian joint research project 13РБ-064.

Keywords: co-cultivation, antimicrobial activity, biosafety, metabiotics, lactic acid bacteria, yeast

Procedia PDF Downloads 339
1101 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups

Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto

Abstract:

The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.

Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group

Procedia PDF Downloads 378
1100 A Study on Characteristics of Runoff Analysis Methods at the Time of Rainfall in Rural Area, Okinawa Prefecture Part 2: A Case of Kohatu River in South Central Part of Okinawa Pref

Authors: Kazuki Kohama, Hiroko Ono

Abstract:

The rainfall in Japan is gradually increasing every year according to Japan Meteorological Agency and Intergovernmental Panel on Climate Change Fifth Assessment Report. It means that the rainfall difference between rainy season and non-rainfall is increasing. In addition, the increasing trend of strong rain for a short time clearly appears. In recent years, natural disasters have caused enormous human injuries in various parts of Japan. Regarding water disaster, local heavy rain and floods of large rivers occur frequently, and it was decided on a policy to promote hard and soft sides as emergency disaster prevention measures with water disaster prevention awareness social reconstruction vision. Okinawa prefecture in subtropical region has torrential rain and water disaster several times a year such as river flood, in which is caused in specific rivers from all 97 rivers. Also, the shortage of capacity and narrow width are characteristic of river in Okinawa and easily cause river flood in heavy rain. This study focuses on Kohatu River that is one of the specific rivers. In fact, the water level greatly rises over the river levee almost once a year but non-damage of buildings around. On the other hand in some case, the water level reaches to ground floor height of house and has happed nine times until today. The purpose of this research is to figure out relationship between precipitation, surface outflow and total treatment water quantity of Kohatu River. For the purpose, we perform hydrological analysis although is complicated and needs specific details or data so that, the method is mainly using Geographic Information System software and outflow analysis system. At first, we extract watershed and then divided to 23 catchment areas to understand how much surface outflow flows to runoff point in each 10 minutes. On second, we create Unit Hydrograph indicating the area of surface outflow with flow area and time. This index shows the maximum amount of surface outflow at 2400 to 3000 seconds. Lastly, we compare an estimated value from Unit Hydrograph to a measured value. However, we found that measure value is usually lower than measured value because of evaporation and transpiration. In this study, hydrograph analysis was performed using GIS software and outflow analysis system. Based on these, we could clarify the flood time and amount of surface outflow.

Keywords: disaster prevention, water disaster, river flood, GIS software

Procedia PDF Downloads 137
1099 Social Value of Travel Time Savings in Sub-Saharan Africa

Authors: Richard Sogah

Abstract:

The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.

Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa

Procedia PDF Downloads 109
1098 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164
1097 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows

Authors: C. D. Ellis, H. Xia, X. Chen

Abstract:

Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.

Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics

Procedia PDF Downloads 231
1096 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 269
1095 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption

Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu

Abstract:

By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.

Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture

Procedia PDF Downloads 377
1094 Morpho-Agronomic Response to Water Stress of Some Nigerian Bambara Groundnut (Vigna Subterranea (L.) Verdc.) Germplasm and Genetic Diversity Studies of Some Selected Accessions Using Ssr Markers

Authors: Abejide Dorcas Ropo, , Falusi Olamide Ahmed, Daudu Oladipupo Abdulazeez Yusuf, Salihu Bolaji Zuluquri Neen, Muhammad Liman Muhammad, Gado Aishatu Adamu

Abstract:

Water stress is a major factor limiting the productivity of crops in the world today. This study evaluated the morpho-agronomic response of twenty-four (24) Nigerian Bambara groundnut landraces to water stress and genetic diversity of some selected accessions using SSR markers. The studies was carried out in the Botanical garden of the Department of Plant Biology, Federal University of Technology, Minna, Niger State, Nigeria in a randomized complete block design using three replicates. Molecular analysis using SSR primers was carried out at the Centre for Bio- Science, International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria in order to characterize ten selected accessions comprising of the seven most drought tolerant and the three most susceptible accessions detected from the morpho-agronomic studies. Results revealed that water stress decreased morpho-agronomic traits such as plant height, leaf area, number of leaves per plant and seed yield etc. A total of 22 alleles were detected by the SSR markers used with a mean number of 4 allelles. Simple Sequence Repeat (SSR) markers MBamCO33, Primer 65 and G358B2-D15 each detected 4 allelles while Primer 3FR and 4FR detected 5 allelles each. The study revealed significantly high polymorphisms in 10 Loci. The mean value of Polymorpic information content was 0.6997 implying the usefulness of the primers used in identifying genetic similarities and differences among the Bambara groundnut genotypes. The SSR analysis revealed a comparable pattern between genetic diversity and drought tolerance of the genotypes. The Unweighted Paired Group Method with Arithmethic Mean (UPGMA) dendrogram showed that at a genetic distance of 0.1, the accessions were grouped into three groups according to their level of tolerance to drought. The two most drought tolerant accessions were grouped together and the 5th and 6th most drought tolerant accession were also grouped together. This suggests that the genotypes grouped together may be genetically close, may possess similar genes or have a common origin. The degree of genetic variants obtained could be useful in bambara groundnut breeding for drought tolerance. The identified drought tolerant bambara groundnut landraces are important genetic resources for drought stress tolerance breeding programme of bambara groundnut. The genotypes are also useful for germplasm conservation and global implications.

Keywords: bambara groundnut, genetic diversity, germplasm, SSR markers, water stress

Procedia PDF Downloads 20