Search results for: market data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27400

Search results for: market data

25600 Impact of Displacements Durations and Monetary Costs on the Labour Market within a City Consisting on Four Areas a Theoretical Approach

Authors: Aboulkacem El Mehdi

Abstract:

We develop a theoretical model at the crossroads of labour and urban economics, used for explaining the mechanism through which the duration of home-workplace trips and their monetary costs impact the labour demand and supply in a spatially scattered labour market and how they are impacted by a change in passenger transport infrastructures and services. The spatial disconnection between home and job opportunities is referred to as the spatial mismatch hypothesis (SMH). Its harmful impact on employment has been subject to numerous theoretical propositions. However, all the theoretical models proposed so far are patterned around the American context, which is particular as it is marked by racial discrimination against blacks in the housing and the labour markets. Therefore, it is only natural that most of these models are developed in order to reproduce a steady state characterized by agents carrying out their economic activities in a mono-centric city in which most unskilled jobs being created in the suburbs, far from the Blacks who dwell in the city-centre, generating a high unemployment rates for blacks, while the White population resides in the suburbs and has a low unemployment rate. Our model doesn't rely on any racial discrimination and doesn't aim at reproducing a steady state in which these stylized facts are replicated; it takes the main principle of the SMH -the spatial disconnection between homes and workplaces- as a starting point. One of the innovative aspects of the model consists in dealing with a SMH related issue at an aggregate level. We link the parameters of the passengers transport system to employment in the whole area of a city. We consider here a city that consists of four areas: two of them are residential areas with unemployed workers, the other two host firms looking for labour force. The workers compare the indirect utility of working in each area with the utility of unemployment and choose between submitting an application for the job that generate the highest indirect utility or not submitting. This arbitration takes account of the monetary and the time expenditures generated by the trips between the residency areas and the working areas. Each of these expenditures is clearly and explicitly formulated so that the impact of each of them can be studied separately than the impact of the other. The first findings show that the unemployed workers living in an area benefiting from good transport infrastructures and services have a better chance to prefer activity to unemployment and are more likely to supply a higher 'quantity' of labour than those who live in an area where the transport infrastructures and services are poorer. We also show that the firms located in the most accessible area receive much more applications and are more likely to hire the workers who provide the highest quantity of labour than the firms located in the less accessible area. Currently, we are working on the matching process between firms and job seekers and on how the equilibrium between the labour demand and supply occurs.

Keywords: labour market, passenger transport infrastructure, spatial mismatch hypothesis, urban economics

Procedia PDF Downloads 292
25599 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 513
25598 Using Implicit Data to Improve E-Learning Systems

Authors: Slah Alsaleh

Abstract:

In the recent years and with popularity of internet and technology, e-learning became a major part of majority of education systems. One of the advantages the e-learning systems provide is the large amount of information available about the students' behavior while communicating with the e-learning system. Such information is very rich and it can be used to improve the capability and efficiency of e-learning systems. This paper discusses how e-learning can benefit from implicit data in different ways including; creating homogeneous groups of student, evaluating students' learning, creating behavior profiles for students and identifying the students through their behaviors.

Keywords: e-learning, implicit data, user behavior, data mining

Procedia PDF Downloads 310
25597 Online Bakery Management System Proposal

Authors: Alexander Musyoki, Collins Odour

Abstract:

Over the past few years, the bakery industry in Kenya has experienced significant growth largely in part to the increased adoption of technology and automation in their processes; more specifically due to the adoption of bakery management systems to help in running bakeries. While they have been largely responsible for the improved productivity and efficiency in bakeries, most of them are now outdated and pose more challenges than benefits. The proposed online bakery management system mentioned in this paper aims to address this by allowing bakery owners to track inventory, budget, job progress, and data analytics on each job and in doing so, promote the Sustainable Development Goals 3 and 12, which aim to ensure healthy lives and promote sustainable economic growth as the proposed benefits of these features include scalability, easy accessibility, reduced acquisition costs, better reliability, and improved functionality that will allow bakeries to become more competitive, reduce waste and track inventory more efficiently. To better understand the challenges, a comprehensive study has been performed to assess these traditional systems and try to understand if an online bakery management system can prove to be advantageous to bakery owners. The study conducted gathered feedback from bakery owners and employees in Nairobi County, Kenya using an online survey with a response rate of about 86% from the target population. The responses cited complex and hard to use bakery management systems (59.7%), lack of portability from one device to the other (58.1%) and high acquisition costs (51.6%) as the top challenges of traditional bakery management systems. On the other hand, some of the top benefits that most of the respondents would realize from the online bakery management system was better reliability (58.1%) and reduced acquisition costs (58.1%). Overall, the findings suggest that an online bakery management system has a lot of advantages over traditional systems and is likely to be well-received in the market. In conclusion, the proposed online bakery management system has the potential to improve the efficiency and competitiveness of small-sized bakeries in Nairobi County. Further research is recommended to expand the sample size and diversity of respondents and to conduct more in-depth analyses of the data collected.

Keywords: ICT, technology and automation, bakery management systems, food innovation

Procedia PDF Downloads 78
25596 Enabling Quantitative Urban Sustainability Assessment with Big Data

Authors: Changfeng Fu

Abstract:

Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.

Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data

Procedia PDF Downloads 359
25595 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin

Authors: A. Ishag Mohamed, A. A. Rabah

Abstract:

The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.

Keywords: N-Alkanes, N-Alkenes, nonparametric, regression

Procedia PDF Downloads 654
25594 Preventing Factors for Innovation: The Case of Swedish Construction Small and Medium-Sized Local Companies towards a One-Stop-Shop Business Concept

Authors: Georgios Pardalis, Krushna Mahapatra, Brijesh Mainali

Abstract:

Compared to other sectors, the residential and service sector in Sweden is responsible for almost 40% of the national final energy use and faces great challenges towards achieving reduction of energy intensity. The one- and two-family (henceforth 'detached') houses, constituting 60% of the residential floor area and using 32 TWh for space heating and hot water purposes, offers significant opportunities for improved energy efficiency. More than 80% of those houses are more than 35 years of old and a large share of them need major renovations. However, the rate of energy renovations for such houses is significantly low. The renovation market is dominated by small and medium-sized local companies (SMEs), who mostly offer individual solutions. A one-stop-shop business framework, where a single actor collaborates with other actors and coordinates them to offer a full package for holistic renovations, may speed up the rate of renovation. Such models are emerging in some European countries. This paper aims to understand the willingness of the SMEs to adopt a one-stop-shop business framework. Interviews were conducted with 13 SMEs in Kronoberg county in Sweden, a geographic region known for its initiatives towards sustainability and energy efficiency. The examined firms seem reluctant to adopt one-stop-shop for nonce due to the perceived risks they see in such a business move and due to their characteristics, although they agree that such a move will advance their position in the market and their business volume. By using threat-rigidity and prospect theory, we illustrate how this type of companies can move from being reluctant to adopt one-stop-shop framework to its adoption. Additionally, with the use of behavioral theory, we gain deeper knowledge on those exact reasons preventing those firms from adopting the one-stop-shop framework.

Keywords: construction SMEs, innovation adoption, one-stop-shop, perceived risks

Procedia PDF Downloads 126
25593 Survey on Arabic Sentiment Analysis in Twitter

Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb

Abstract:

Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.

Keywords: big data, social networks, sentiment analysis, twitter

Procedia PDF Downloads 576
25592 Estimating Current Suicide Rates Using Google Trends

Authors: Ladislav Kristoufek, Helen Susannah Moat, Tobias Preis

Abstract:

Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms “depression” and “suicide” relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term “depression” is related to fewer suicides, whereas a greater number of searches for the term “suicide” is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences.

Keywords: nowcasting, search data, Google Trends, official statistics

Procedia PDF Downloads 357
25591 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 475
25590 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company

Authors: Rahma Saleh Hussein Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, CMMS

Procedia PDF Downloads 125
25589 Creativity, Skill, and Intelligence as Understood by Tradition Rooted Craftspersons

Authors: Swasti Singh Ghai

Abstract:

Creativity is understood as an intersubjective phenomenon shaped by socio-cultural values and economic forces. Creativity as a means to achieve progress is a very modern concept, driven by a global capitalist market economy. The dominant urban, often first-world articulations of creativity, overshadow the rural, local and cultural notions of people in the developing nations. Artisanal practices of making grounded in preindustrial and pre-capitalist contexts hold varying cultural and region-specific concepts and standards for ascribing creativity to a person or product, or process. These notions reflect the underlying philosophy that constitutes their worldview. The process of colonization through western education has blurred or overlapped some of these key philosophical concepts. This article adopts a post-colonial stance to understand the perceptions of skill, intelligence and creativity among tradition rooted textile craft practitioners of Kutch, Gujarat in India. The artisans, while negotiating their space in the contemporary markets, are making efforts to include the modern categories of art, craft, and design in their worldview. The paper will first review theories of creativity that throw light on the link between skill, intelligence and creativity. Then the paper will use secondary research and data from interviews to share crafts person notions of skill, creativity and intelligence and their interrelationship.

Keywords: traditional craft, textile, creativity, skill, intelligence

Procedia PDF Downloads 125
25588 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction

Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: computed tomography, computed laminography, compressive sending, low-dose

Procedia PDF Downloads 464
25587 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers

Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin

Abstract:

The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.

Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference

Procedia PDF Downloads 72
25586 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD

Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik

Abstract:

The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.

Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet

Procedia PDF Downloads 571
25585 Humanising Digital Healthcare to Build Capacity by Harnessing the Power of Patient Data

Authors: Durhane Wong-Rieger, Kawaldip Sehmi, Nicola Bedlington, Nicole Boice, Tamás Bereczky

Abstract:

Patient-generated health data should be seen as the expression of the experience of patients, including the outcomes reflecting the impact a treatment or service had on their physical health and wellness. We discuss how the healthcare system can reach a place where digital is a determinant of health - where data is generated by patients and is respected and which acknowledges their contribution to science. We explore the biggest barriers facing this. The International Experience Exchange with Patient Organisation’s Position Paper is based on a global patient survey conducted in Q3 2021 that received 304 responses. Results were discussed and validated by the 15 patient experts and supplemented with literature research. Results are a subset of this. Our research showed patient communities want to influence how their data is generated, shared, and used. Our study concludes that a reasonable framework is needed to protect the integrity of patient data and minimise abuse, and build trust. Results also demonstrated a need for patient communities to have more influence and control over how health data is generated, shared, and used. The results clearly highlight that the community feels there is a lack of clear policies on sharing data.

Keywords: digital health, equitable access, humanise healthcare, patient data

Procedia PDF Downloads 82
25584 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 148
25583 Impact of Violence against Women on Small and Medium Enterprises (SMEs) in Rural Sindh: A Case Study of Kandhkot

Authors: Mohammad Shoaib Khan, Abdul Sattar Bahalkani

Abstract:

This research investigates the violence and their impact on SMEs in Sindh. The main objective of current research is to examine the women empowerment through women participation in small and medium enterprises in upper Sindh. The data were collected from 500 respondents from Kandhkot District, by using simple random technique. A structural questionnaire was designed as an instrument for measuring the impact of SMEs business in women empowerment in rural Sindh. It was revealed that the rural women is less confident and their husbands were always given them hard time once they are exposing themselves to outside the boundaries of the house. It was revealed that rural women have a major contribution in social, economic, and political development. It was further revealed that women are getting low wages and due to non-availability of market facility they are paying low wages. The negative impact of husbands’ income and having children at the age of 0-6 years old are also significant. High income of other household member raises the reservation wage of mothers, thus lowers the probability of participation when the objective of working is to help family’s financial need. The impact of childcare on mothers’ labor force participation is significant but not as the theory predicted. The probability of participation in labor force is significantly higher for women who lived in the urban areas where job opportunities are greater compared to the rural.

Keywords: empowerment, violence against women, SMEs, rural

Procedia PDF Downloads 331
25582 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 153
25581 Maximizing Giant Prawn Resource Utilization in Banjar Regency, Indonesia: A CPUE and MSY Analysis

Authors: Ahmadi, Iriansyah, Raihana Yahman

Abstract:

The giant freshwater prawn (Macrobrachium rosenbergii de Man, 1879) is a valuable species for fisheries and aquaculture, especially in Southeast Asia, including Indonesia due to their high market demand and potential for export. The growing demand for prawns is straining the sustainability of the Banjar Regency fishery. To ensure the long-term sustainability and economic viability of the prawn fishing in this region, it is imperative to implement evidence-based management practices. This requires comprehensive data on the Catch per Unit Effort (CPUE), Maximum Sustainable Yield (MSY) and the current rate of prawn resource exploitation. it analyzed five years of prawn catch data (2019-2023) obtained from South Kalimantan Marine and Fisheries Services. Fishing gears (e.g. hook & line and cast net) were first standardized with Fishing Power Index, and then calculated effort and MSY. The intercept (a) and the slope (b) values of regression curve were used to estimate the catch-maximum sustainable yield (CMSY) and optimal fishing effort (Fopt) levels within the framework of the Surplus Production Model. The estimated rates of resource utilization were then compared to the criteria of The National Commission of Marine Fish Stock Assessment. The findings showed that the CPUE value peaked in 2019 at 33.48 kg/trip, while the lowest value observed in 2022 at 5.12 kg/trip. The CMSY value was estimated to be 17,396 kg/year, corresponding to the Fopt level of 1,636 trips/year. The highest utilization rate was 56.90% recorded in 2020, while the lowest rate was observed in 2021 at 46.16%. The annual utilization rates were classified as “medium”, suggesting that increasing fishing effort by 45% could potentially maximize prawn catches at an optimum level. These findings provide a baseline for sustainable fisheries management in the region.

Keywords: giant prawns, CPUE, fishing power index, sustainable potential, utilization rate

Procedia PDF Downloads 16
25580 A Gap Analysis of Attitude Towards Sustainable Sportswear Product Development between Consumers and Suppliers

Authors: Y. N. Fung, R. Liu, T. M. Choi

Abstract:

Over the past decades, previous studies have explored different consumers’ attitudes towards sustainable fashion and how these attitudes affect consumer behaviors. Researchers have attempted to provide solutions for product suppliers (e.g., retailers, designers, developers, and manufacturers) through studying consumers’ attitudes towards sustainable fashion. However, based on the studies of consumer attitudes, investigations on the sales and market share of sustainable sportswear products remain under-explored. Gaps may exist between the consumers’ expectations and the developed sustainable sportswear products. In this study, a novel study has been carried out to examine the attitude gaps existing between the sustainable sportswear suppliers’ (SSSs) and the sustainable sportswear consumers (SSCs). This study firstly identifies the key attitudes towards sustainable sportswear product development. It analyses how sustainable attitudes affect the products being developed, as well as the effects of the attitude’s difference between the SSSs and the SSCs on the consumers’ satisfaction towards sportswear product consumption. A gap analysis research framework is adopted with the use of collected questionnaire survey data. The results indicate that a significant difference exists between SSSs and SSCs’ attitudes towards sustainable design, manufacture, product features, and branding. Based on in-depth interviews, the major causes of the difference in attitudes are studied to provide managerial insights for sustainable sportswear product management and business development.

Keywords: sustainability, sportswear, attitude, gap analysis, suppliers, consumers

Procedia PDF Downloads 114
25579 Nuclear Decay Data Evaluation for 217Po

Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation

Procedia PDF Downloads 433
25578 Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information

Authors: I. Nyoman Mahayasa Adiputra

Abstract:

Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar.

Keywords: geographic information system, Google fusion table technology, delivery of disease data information, Denpasar city

Procedia PDF Downloads 129
25577 Evaluation Of A Start Up Business Strategy In Movie Industry: Case Study Of Visinema

Authors: Stacia E. H. Sitohang, S.Mn., Socrates Rudy Sirait

Abstract:

The first movie theater in Indonesia was established in December 1900. The movie industry started with international movie penetration. After a while, local movie producers started to rise and created local Indonesian movies. The industry is growing through ups and downs in Indonesia. In 2008, Visinema was founded in Jakarta, Indonesia, by AnggaDwimasSasongko, one of the most respected movie director in Indonesia. After getting achievements and recognition, Visinema chose to grow the company horizontally as opposed to only grow vertically and gain another similar achievement. Visinemachose to build the ecosystem that enables them to obtain many more opportunities and generatebusiness sustainability. The company proceed as an agile company. They created several business subsidiaries to support the company’s Intellectual Property (IP) development. This research was done through interview with the key persons in the company and questionnaire to get market insights regarding Visinema. The is able to transform their IP that initially started from movies to different kinds of business model. Interestingly, Angga chose to use the start up approach to create Visinema. In 2019, the company successfully gained Series A funding from Intudo Ventures and got other various investment schemes to support the business. In early 2020, Covid-19 pandemic negatively impacted many industries in Indonesia, especially the entertainment and leisure businesses. Fortunately, Visinema did not face any significant problem regarding survival during the pandemic, there were nolay-offs nor work hour reductions. Instead, they were thinking of much bigger opportunities and problems. While other companies suffer during the pandemic, Visinema created the first focused Transactional Video On Demand (TVOD) in Indonesia named Bioskop Online. The platform was created to keep the company innovating and adapting with the new online market as the result of the Covid-19 pandemic. Other than a digital platform, Visinemainvested heavily in animation to target kids and family business. They believed that penetrating the technology and animation market is going to be the biggest opportunity in Visinema’s road map. Besides huge opportunities, Visinema is also facing problems. The first is company brand positioning. Angga, as the founder, felt the need to detach his name from the brand image of Visinema to create system sustainability and scalability. Second, the company has to create a strategy to refocus in a particular business area to maintain and improve the competitive advantages. The third problem, IP piracy is a huge structural problem in Indonesia, the company considers IP thieves as their biggest competitors as opposed to other production company. As the recommendation, we suggest a set of branding and management strategy to detach the founder’s name from Visinema’s brand and improve the competitive advantages. We also suggest Visinema invest in system building to prevent IP piracy in the entertainment industry, which later can be another business subsidiary of Visinema.

Keywords: business ecosystem, agile, sustainability, scalability, start Up, intellectual property, digital platform

Procedia PDF Downloads 138
25576 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs

Authors: Mitzi S. Brammer

Abstract:

Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.

Keywords: inclusion, higher education, pedagogy, equity, diversity

Procedia PDF Downloads 67
25575 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 344
25574 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System

Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal

Abstract:

Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.

Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks

Procedia PDF Downloads 395
25573 The Journey from Lean Manufacturing to Industry 4.0: The Rail Manufacturing Process in Mexico

Authors: Diana Flores Galindo, Richard Gil Herrera

Abstract:

Nowadays, Lean Manufacturing and Industry 4.0 are very important in every country. One of the main benefits is continued market presence. It has been identified that there is a need to change existing educational programs, as well as update the knowledge and skills of existing employees. It should be borne in mind that behind each technological improvement, there is a human being. Human talent cannot be neglected. The main objectives of this article are to review the link between Lean Manufacturing, the incorporation of Industry 4.0 and the steps to follow to implement it; analyze the current situation and study the implications and benefits of this new trend, with a particular focus on Mexico. Lean Manufacturing and Industry 4.0 implementation waves must always take care of the most important capital – intellectual capital. The methodology used in this article comprised the following steps: reviewing the reality of the fourth industrial revolution, reviewing employees’ skills on the journey to become world-class, and analyzing the situation in Mexico. Lean Manufacturing and Industry 4.0 were studied not as exclusive concepts, but as complementary ones. The methodological framework used is focused on motivating companies’ collaborators to guarantee common results, innovate, and remain in the market in the face of new requirements from company stakeholders. The key findings were that both trends emphasize the need to improve communication across the entire company and incorporate new technologies into everyday work, from the shop floor to administrative staff, to help improve processes. Taking care of people, activities and processes will bring a company success. In the specific case of Mexico, companies in all sectors need to be aware of and implement technological improvements according to their specific needs. Low-cost labor represents one of the most typical barriers. In conclusion, companies must build a roadmap according to their strategy and needs to achieve their short, medium- and long-term goals.

Keywords: lean management, lean manufacturing, industry 4.0, motivation, SWOT analysis, Hoshin Kanri

Procedia PDF Downloads 144
25572 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 316
25571 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman Electricity Transmission Company

Authors: Rahma Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS dept. This paper will describe in detail the GIS data submission process and the journey to develop the current process. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting, and data alterations salso aided to reduce the missing attributes of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the year 2017 and the year 2021. Overall, concluding that by governance, asset information & GIS department can control GIS data process; collect, properly record, and manage asset data and information within OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, geodatabase, NOC, CMMS

Procedia PDF Downloads 207