Search results for: destination prediction
892 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity
Authors: Sayed Abdallah Mohamed Dahy
Abstract:
Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt
Procedia PDF Downloads 380891 Selecting the Best Risk Exposure to Assess Collision Risks in Container Terminals
Authors: Mohammad Ali Hasanzadeh, Thierry Van Elslander, Eddy Van De Voorde
Abstract:
About 90 percent of world merchandise trade by volume being carried by sea. Maritime transport remains as back bone behind the international trade and globalization meanwhile all seaborne goods need using at least two ports as origin and destination. Amid seaborne traded cargos, container traffic is a prosperous market with about 16% in terms of volume. Albeit containerized cargos are less in terms of tonnage but, containers carry the highest value cargos amongst all. That is why efficient handling of containers in ports is very important. Accidents are the foremost causes that lead to port inefficiency and a surge in total transport cost. Having different port safety management systems (PSMS) in place, statistics on port accidents show that numerous accidents occur in ports. Some of them claim peoples’ life; others damage goods, vessels, port equipment and/or the environment. Several accident investigation illustrate that the most common accidents take place throughout transport operation, it sometimes accounts for 68.6% of all events, therefore providing a safer workplace depends on reducing collision risk. In order to quantify risks at the port area different variables can be used as exposure measurement. One of the main motives for defining and using exposure in studies related to infrastructure is to account for the differences in intensity of use, so as to make comparisons meaningful. In various researches related to handling containers in ports and intermodal terminals, different risk exposures and also the likelihood of each event have been selected. Vehicle collision within the port area (10-7 per kilometer of vehicle distance travelled) and dropping containers from cranes, forklift trucks, or rail mounted gantries (1 x 10-5 per lift) are some examples. According to the objective of the current research, three categories of accidents selected for collision risk assessment; fall of container during ship to shore operation, dropping container during transfer operation and collision between vehicles and objects within terminal area. Later on various consequences, exposure and probability identified for each accident. Hence, reducing collision risks profoundly rely on picking the right risk exposures and probability of selected accidents, to prevent collision accidents in container terminals and in the framework of risk calculations, such risk exposures and probabilities can be useful in assessing the effectiveness of safety programs in ports.Keywords: container terminal, collision, seaborne trade, risk exposure, risk probability
Procedia PDF Downloads 374890 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis
Authors: Farzad Khajavi
Abstract:
Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction
Procedia PDF Downloads 208889 Compilation of Load Spectrum of Loader Drive Axle
Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei
Abstract:
In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.Keywords: load spectrum, axle, torque, rain-flow counting method, extrapolation
Procedia PDF Downloads 364888 Influence of Environmental Temperature on Dairy Herd Performance and Behaviour
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, S. Harapanahalli, J. Walsh
Abstract:
The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.Keywords: behavior, milk yield, temperature, precision technologies
Procedia PDF Downloads 109887 Evaluation of Spatial Correlation Length and Karhunen-Loeve Expansion Terms for Predicting Reliability Level of Long-Term Settlement in Soft Soils
Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi
Abstract:
The spectral random field method is one of the widely used methods to obtain more reliable and accurate results in geotechnical problems involving material variability. Karhunen-Loeve (K-L) expansion method was applied to perform random field discretization of cross-correlated creep parameters. Karhunen-Loeve expansion method is based on eigenfunctions and eigenvalues of covariance function adopting Kernel integral solution. In this paper, the accuracy of Karhunen-Loeve expansion was investigated to predict long-term settlement of soft soils adopting elastic visco-plastic creep model. For this purpose, a parametric study was carried to evaluate the effect of K-L expansion terms and spatial correlation length on the reliability of results. The results indicate that small values of spatial correlation length require more K-L expansion terms. Moreover, by increasing spatial correlation length, the coefficient of variation (COV) of creep settlement increases, confirming more conservative and safer prediction.Keywords: Karhunen-Loeve expansion, long-term settlement, reliability analysis, spatial correlation length
Procedia PDF Downloads 159886 Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements
Authors: Shibei Huang
Abstract:
In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question.Keywords: existing building, sensor, thermal analysis, retrofit
Procedia PDF Downloads 63885 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 103884 Numerical Study on the Performance of Upgraded Victorian Brown Coal in an Ironmaking Blast Furnace
Authors: Junhai Liao, Yansong Shen, Aibing Yu
Abstract:
A 3D numerical model is developed to simulate the complicated in-furnace combustion phenomena in the lower part of an ironmaking blast furnace (BF) while using pulverized coal injection (PCI) technology to reduce the consumption of relatively expensive coke. The computational domain covers blowpipe-tuyere-raceway-coke bed in the BF. The model is validated against experimental data in terms of gaseous compositions and coal burnout. Parameters, such as coal properties and some key operational variables, play an important role on the performance of coal combustion. Their diverse effects on different combustion characteristics are examined in the domain, in terms of gas compositions, temperature, and burnout. The heat generated by the combustion of upgraded Victorian brown coal is able to meet the heating requirement of a BF, hence making upgraded brown coal injected into BF possible. It is evidenced that the model is suitable to investigate the mechanism of the PCI operation in a BF. Prediction results provide scientific insights to optimize and control of the PCI operation. This model cuts the cost to investigate and understand the comprehensive combustion phenomena of upgraded Victorian brown coal in a full-scale BF.Keywords: blast furnace, numerical study, pulverized coal injection, Victorian brown coal
Procedia PDF Downloads 243883 Saline Water Transgression into Fresh Coastal Groundwater in the Confined Aquifer of Lagos, Nigeria
Authors: Babatunde Adebo, Adedeji Adetoyinbo
Abstract:
Groundwater is an important constituent of the hydrological cycle and plays a vital role in augmenting water supply to meet the ever-increasing needs of people for domestic, agricultural and industrial purposes. Unfortunately, this important resource has in most cases been contaminated due to the advancement of seawater into the fresh groundwater. This is due to the high volume of water being abstracted in these areas as a result of a high population of coastal dwellers. The knowledge of salinity level and intrusion of saltwater into the freshwater aquifer is, therefore, necessary for groundwater monitoring and prediction in the coastal areas. In this work, an advection-dispersion saltwater intrusion model is used to study and simulate saltwater intrusion in a typical coastal aquifer. The aquifer portion was divided into a grid with elements and nodes. Map of the study area indicating well locations were overlain on the grid system such that these locations coincide with the nodes. Chlorides at these well were considered as initial nodal salinities. Results showed a highest and lowest increase in simulated chloride of 37.89 mg/L and 0.8 mg/L respectively. It also revealed that the chloride concentration of most of the considered well might climb unacceptable level in the next few years, if the current abstraction rate continues unabated.Keywords: saltwater intrusion, coastal aquifer, nodal salinity, chloride concentration
Procedia PDF Downloads 240882 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 66881 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach
Authors: Mortez Alijani, Anas Osman
Abstract:
Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point
Procedia PDF Downloads 164880 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein
Authors: Y. Ruchi, A. Prerna, S. Deepshikha
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.Keywords: ALS, binding site, homology modeling, neuronal degeneration
Procedia PDF Downloads 389879 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients
Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera
Abstract:
Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine
Procedia PDF Downloads 253878 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 154877 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 174876 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 75875 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 309874 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 228873 The Grand Egyptian Museum as a Cultural Interface
Authors: Mahmoud Moawad Mohamed Osman
Abstract:
The Egyptian civilization was and still is an inspiration for many human civilizations and modern sciences. For this reason, there is still a passion for the ancient Egyptian civilization. Due to the breadth and abundance of the outputs of the ancient Egyptian civilization, many museums have been established that contribute to displaying and demonstrating the splendor of the ancient Egyptian civilization, and among those museums is the Grand Egyptian Museum (Egypt's gift to the whole world). The idea of establishing the Grand Egyptian Museum began in the nineties of the last century, and in 2002 the foundation stone was laid for the museum project to be built in a privileged location overlooking the eternal pyramids of Giza, where the Egyptian state was declared, and under the auspices of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Union of Architects. , for an international architectural competition for the best design for the museum. The current design submitted by Heneghan Peng Architects in Ireland won, and its design was based on the rays of the sun extending from the tops of the three pyramids when they meet to represent a conical mass, which is the Grand Egyptian Museum. The construction of the museum project began in May 2005, when the site was paved and prepared, and in 2006, the largest antiquities restoration center in the Middle East was established, dedicated to the restoration, preservation, maintenance and rehabilitation of the antiquities scheduled to be displayed in the museum halls, which was opened in 2010. The construction of the museum building, which has an area of more than 300,000 square meters, was completed during the year 2021, and includes a number of exhibition halls, each of which is considered larger than many current museums in Egypt and the world. The museum is considered one of the most important and greatest achievements of modern Egypt. It was created to be an integrated global civilizational, cultural and entertainment edifice, and to be the first destination for everyone interested in ancient Egyptian heritage, as the largest museum in the world that tells the story of the history of ancient Egyptian civilization, as it contains a large number of distinctive and unique artifacts, including the treasures of the golden king Tutankhamun, which... It is displayed for the first time in its entirety since the discovery of his tomb in November 1922, in addition to the collection of Queen Hetepheres, the guard of the mother of King Khufu, the builder of the Great Pyramid in Giza, as well as the Museum of King Khufu’s Boats, as well as various archaeological collectibles from the pre-dynastic era until the Greek and Roman eras.Keywords: grand egyptian museum, egyptian civilization, education, museology
Procedia PDF Downloads 45872 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 458871 Tourists' Perception to the Service Quality of White Water Rafting in Bali: Case Study of Ayung River
Authors: Ni Putu Evi Wijayanti, Made Darmiati, Ni Ketut Wiwiek Agustina, Putu Gde Arie Yudhistira, Marcel Hardono
Abstract:
This research study discusses the tourists’ perception to white water rafting service quality in Bali (Case Study: Ayung River). The aim is to determine the tourists’ perception to: firstly, the services quality of white water rafting trip in Bali, secondly, is to determine which dimensions of the service quality that need to take main handling priority in accordance with the level of important service of white water rafting company’s working performance toward the service quality of rafting in Bali especially on Ayung Riveri, lastly, is to know the efforts are needed to improve the service quality of white water rafting trip for tourist in Bali, specifically on Ayung River. This research uses the concept of the service quality with five principal dimensions, namely: Tangibles, Reliability, Responsiveness, Assurance, Empathy. Location of the research is tourist destination area of the Ayung River, that lies between the boundary of Badung Regency at Western part and Gianyar Regency eastern side. There are three rafting companies located on the Ayung River. This research took 100 respondents who were selected as a sample by using purposive sampling method. Data were collected through questionnaires distributed to domestic tourists then tabulated using the weighting scale (Likert scale) and analyzed using analysis of the benefit performance (important performance analysis) in the form of Cartesian diagram. The results of the research are translated into three points. Firstly, there are 23 indicators assessed by the service aspect of domestic tourists where the highest value is the aspect of familiarity between the tourist and employees with points (0.29) and the lowest score is the aspect of the clarity of the Ayung River water discharge value (-0.35). This shows that the indicator has not been fully able to meet the expectations of service aspects of the rating. Secondly, the dimensions of service quality that requires serious attention is the dimension of tangibles. The third point is the efforts that needs to be done adapted to the results of the Cartesian diagram breaks down into four quadrants. Based on the results of the research suggested to the manager of the white water rafting tour in order to continuously improve the service quality to tourists, performing new innovations in terms of product variations, provide insight and training to its employees to increase their competence, especially in the field of excellent service so that the satisfaction rating can be achieved.Keywords: perception, rafting, service quality, tourist satisfaction
Procedia PDF Downloads 244870 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 154869 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 142868 Child Labour and Contemporary Slavery: A Nigerian Perspective
Authors: Obiageli Eze
Abstract:
Millions of Nigerian children are subjected daily to all forms of abuse, ranging from trafficking to slavery, and forced labor. These under age children are taken from different parts of the Country to be used as sex slaves and laborers in the big cities, killed for rituals, organ transplantation, or used for money laundering, begging on the streets or are put to work in the fields. These children are made to do inhuman jobs under degrading conditions and face all kinds of abuse at the hands of their owners with no hope of escape. While lots of people blame poverty or culture as a basis for human trafficking in Nigeria, the National Agency for the Prohibition and Trafficking in Persons and other Related Matters (NAPTIP) says other causes of the outrageous rate of human trafficking in the country are ignorance, desperation, and the promotion and commercialization of sex by the European Union (EU) as dozens of young Nigerian children and women are forced to work as prostitutes in European countries including the Netherlands, France, Italy, and Spain. In the cause of searching for greener pastures, they are coerced into work they have not chosen and subjected to perpetual life in bondage. The Universal Declaration of Human Rights 1948 prohibits slave trade and slavery. Despite the fact that Nigeria is a Sovereign member of the United Nations and signatory to this International instrument, Child trafficking and slavery is still on the increase. This may be caused by the fact that the punishment for this crime in Nigeria is a maximum term of 10 years imprisonment with some of the worst offenders getting off with as little as 2 years imprisonment or an option of fine. It goes without saying that this punishment is not sufficient to act as a deterrent to these modern slave traders. Another major factor oiling the wheel of trafficking in the country is voodoo. The victims are taken to shrines of voodoo priests for oath taking. There, underage girls and boys are made to swear that they would never reveal the identities of their traffickers to anyone if arrested whether in the course of the journey or in the destination countries and that they would pay off debt. Nigeria needs tougher Laws in order to be able to combat human trafficking and slave trade. Also there has to be aggressive sensitization and awareness programs designed to educate and enlighten the public as to the dangers faced by these victims and the need to report any suspicious activity to the authorities. This paper attempts to give an insight into the plight of under-age Nigerian children trafficked and sold as slaves and offer a more effective stand in the fight against it.Keywords: child labor, slavery, slave trade, trafficking
Procedia PDF Downloads 502867 Impacts of Environmental Science in Biodiversity Conservation
Authors: S. O. Ekpo
Abstract:
Environmental science deals with everyday challenges such as a cell for call for good and safe quality air, water, food and healthy leaving condition which include destruction of biodiversity and how to conserve these natural resources for sustainable development. Biodiversity or species richness is the sum of all the different species of animals, plants, fungi and microorganisms leaving on earth and variety of habitats in which they leave. Human beings leave on plants and animals on daily basis for food, clothing, medicine, housing, research and trade or commerce; besides this, biodiversity serves to purify the air, water and land of contaminant, and recycle useful materials for continual use of man. However, man continual incessant exploitation and exploration has affected biodiversity negatively in many ways such habitant fragmentation and destruction, introduction of invasive species, pollution, overharvesting, prediction and pest control amongst others. Measures such as recycling material, establishing natural parks, sperm bank, limiting the exploitation of renewable resources to sustainable yield and urban and industrial development as well as prohibiting hunting endangered species and release of non native live forms into an area will go a long way towards conserving biodiversity for continues profitable yield.Keywords: biodiversity, conservation, exploitation and exploration sustainable yield, recycling of materials
Procedia PDF Downloads 223866 Exploration of Abuse of Position for Sexual Gain by UK Police
Authors: Terri Cole, Fay Sweeting
Abstract:
Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.Keywords: abuse of position, forensic psychology, misconduct, sexual abuse
Procedia PDF Downloads 194865 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study
Authors: Kashif Hassan, M.A. Ahanger
Abstract:
Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.Keywords: flood plain, HEC-RAS, Jhelum, return period
Procedia PDF Downloads 426864 Relocating Migration for Higher Education: Analytical Account of Students' Perspective
Authors: Sumit Kumar
Abstract:
The present study aims to identify the factors responsible for the internal migration of students other than push & pull factors; associated with the source region and destination region, respectively, as classified in classical geography. But in this classification of factors responsible for the migration of students, an agency of individual and the family he/she belongs to, have not been recognized which has later become the centre of the argument for describing and analyzing migration in New Economic theory of migration and New Economics of labour migration respectively. In this backdrop, the present study aims to understand the agency of an individual and the family members regarding one’s migration for higher education. Therefore, this study draws upon New Economic theory of migration and New Economics of labour migration for identifying the agency of individual or family in the context of migration. Further, migration for higher education consists not only the decision to migrate but also where to migrate (location), which university, which college and which course to pursue, also. In order to understand the role of various individuals at various stage of student migration, present study seeks help from the social networking approach for migration which identifies the individuals who facilitate the process of migration by reducing negative externalities of migration through sharing information and various other sorts of help to the migrant. Furthermore, this study also aims to rank those individuals who have helped migrants at various stages of migration for higher education in taking a decision, along with the factors responsible for their migration on the basis of their perception. In order to fulfill the above mentioned objectives of this study, quantification of qualitative data (perception of respondents) has been done employing through frequency distribution analysis. Qualitative data has been collected at two levels but questionnaire survey was the tool for data collection at both the occasions. Twenty five students who have migrated to other state for the purpose of higher education have been approached for pre-questionnaire survey consisting open-ended questions while one hundred students belonging to the same clientele have been approached for questionnaire survey consisting close-ended questions. This study has identified social pressure, peer group pressure and parental pressure; variables not constituting push & pull factors, very important for students’ migration. They have been even assigned better ranked by the respondents than push factors. Further, self (migrant themselves) have been ranked followed by parents by the respondents when it comes to take various decisions attached with the process of migration. Therefore, it can be said without sounding cynical that there are other factors other than push & pull factors which do facilitate the process of migration for higher education not only at the level to migrate but also at other levels intrinsic to the process of migration for higher education.Keywords: agency, migration for higher education, perception, push and pull factors
Procedia PDF Downloads 244863 Correlation between Funding and Publications: A Pre-Step towards Future Research Prediction
Authors: Ning Kang, Marius Doornenbal
Abstract:
Funding is a very important – if not crucial – resource for research projects. Usually, funding organizations will publish a description of the funded research to describe the scope of the funding award. Logically, we would expect research outcomes to align with this funding award. For that reason, we might be able to predict future research topics based on present funding award data. That said, it remains to be shown if and how future research topics can be predicted by using the funding information. In this paper, we extract funding project information and their generated paper abstracts from the Gateway to Research database as a group, and use the papers from the same domains and publication years in the Scopus database as a baseline comparison group. We annotate both the project awards and the papers resulting from the funded projects with linguistic features (noun phrases), and then calculate tf-idf and cosine similarity between these two set of features. We show that the cosine similarity between the project-generated papers group is bigger than the project-baseline group, and also that these two groups of similarities are significantly different. Based on this result, we conclude that the funding information actually correlates with the content of future research output for the funded project on the topical level. How funding really changes the course of science or of scientific careers remains an elusive question.Keywords: natural language processing, noun phrase, tf-idf, cosine similarity
Procedia PDF Downloads 245