Search results for: muscle damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3037

Search results for: muscle damage

2887 An Acoustical Diagnosis of a Shaft-Wood Phyto-Pathogenic Damage of Sequoiadendron giganteum (Lindl.) Buccholz

Authors: Yuri V. Plugatar, Vladimir P. Koba, Vladimir V. Papelbu, Vladimir N. Gerasimchuk, Tatjana M. Sakhno

Abstract:

Using a supersonic shaft–wood tomography, the evaluation of a shaft-wood phyto-pathogenic damage level of Sequoiadendron giganteum (Lindl.) Buccholz was prosecuted. The digital bivariate reflections of the shaft tissue damage were obtained, the characteristics of comparative parameters of the wood-decay degree were given. The investigation results allowed to show up the role of some edaphic factors in their affection on a vital condition and the level of destructive processes while shaft tissue damaging of S.giganteum. It was pinned up that soil consolidation, and hydro-morphication equally make for a phyto-pathogenic damage of plants. While soil consolidation negative acting the shaft-wood damage is located in an underneath of a shaft. In the conditions of an enlarged hydro-morphication a tissue degradation runs less intensively, the destructive processes more active spread in a vertical section of a shaft. The use of a supersonic tomography method gives wide possibilities to diagnose a shaft-wood phyto-pathogenic damage.

Keywords: Sequoiadendron giganteum (Lindl.) Buccholz, supersonic tomography, diagnosis, phyto-pathogenic damage, a vital condition

Procedia PDF Downloads 189
2886 A Comparative Study of Active Release Technique and Myofascial Release Technique in Treatment of Patients with Upper Trapezius Spasm

Authors: Daxa Mishra, R. Harihara, Ankita

Abstract:

Trapezius muscle pain is the most common musculoskeletal disorder occurring in individuals who work with awkward positions, have repetitive movements and movements with precision demands. Treatment techniques like active release technique (ART) and myofascial release (MFR) can be used to relieve muscle spasm. The aim of the study is to compare the effect of ART and MFR on the upper trapezius muscle spasm. Methodology: A series of 60 patients of both sexes between the age group of 20 and 55 with upper trapezius spasm were divided into two groups by computerized randomization. Subjects in each group received treatment in the form of either ART or MFR for the period of seven days. cervical range of motion (ROM), neck disability index scale (NDI) and visual analog scale (VAS) tools were used to measure the outcome. Results: Paired Sample ‘t’ test was used to compare the Outcome differences within each group, while Independent ‘t’ test was used to compare the differences between the two groups for the same outcome measures. The improvement was found in both the groups at 7th day following intervention, but the group which received ART showed significant improvements as compared to group which received MFR. Conclusion: Although both techniques are effective in alleviation of symptoms and associated disability in upper trapezius muscle spasm, ART gave better results as compared to MRF.

Keywords: goniometer, myofascial release, active release, physiotherapy

Procedia PDF Downloads 218
2885 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures

Authors: Reza Rezaeipour Honarmandzad

Abstract:

In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.

Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements

Procedia PDF Downloads 390
2884 The Effects of an Exercise Program Integrated with the Transtheoretical Model on Pain and Trunk Muscle Endurance of Rice Farmers with Chronic Low Back Pain

Authors: Thanakorn Thanawat, Nomjit Nualnetr

Abstract:

Background and Purpose: In Thailand, rice farmers have the most prevalence of low back pain when compared with other manual workers. Exercises have been suggested to be a principal part of treatment programs for low back pain. However, the programs should be tailored to an individual’s readiness to change categorized by a behavioral approach. This study aimed to evaluate a difference between the responses of rice farmers with chronic low back pain who received an exercise program integrated with the transtheoretical model of behavior change (TTM) and those of the comparison group regarding severity of pain and trunk muscle endurance. Materials and Methods: An 8-week exercise program was conducted to rice farmers with chronic low back pain who were randomized to either the TTM (n=62, 52 woman and 10 men, mean age ± SD 45.0±5.4 years) or non-TTM (n=64, 53 woman and 11 men, mean age ± SD 44.7±5.4 years) groups. All participants were tested for their severity of pain and trunk (abdominal and back) muscle endurance at baseline (week 0) and immediately after termination of the program (week 8). Data were analysed by using descriptive statistics and student’s t-tests. The results revealed that both TTM and non-TTM groups could decrease their severity of pain and improve trunk muscle endurance after participating in the 8-week exercise program. When compared with the non-TTM group, however, the TTM showed a significantly greater increase in abdominal muscle endurance than did the non-TTM (P=0.004, 95% CI -12.4 to -2.3). Conclusions and Clinical Relevance: An exercise program integrated with the TTM could provide benefits to rice farmers with chronic low back pain. Future studies with a longitudinal design and more outcome measures such as physical performance and quality of life are suggested to reveal further benefits of the program.

Keywords: chronic low back pain, transtheoretical model, rice farmers, exercise program

Procedia PDF Downloads 361
2883 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 223
2882 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element

Procedia PDF Downloads 130
2881 The Effect of Physical Therapy on Triceps Surae Myofascial Trigger Point

Authors: M. Simon, O. Peillon, R. Seijas, P. Alvarez, A. Pérez-Bellmunt

Abstract:

Introduction: Myofascial trigger points (MTrPs) are defined as hyperirritable areas within taut bands of skeletal muscle and classified as either active or latent. Although they could be present in any muscle, the triceps surae is one of the most affected of the lower limb. The aim of this study was described which treatments are more used and their principal results. Study design: We performed a systematic literature search using strategies for the concepts of “Trigger Points and Gastrocnemius and Soleus not Trapezius” in Medline. Articles were screened by authors and included if they contained a rehabilitation intervention of MTrPs in healthy subjects or patients. Results: The treatments used were mostly invasive interventions and only a small part of the studies used non-invasive treatments. The methodology (time o type of intervention, characteristics of treatment, etc.) used in these treatments were frequently undefined. Overall, examination variables varied significantly among the included studies, but they were improving their parameters when the MTrPs were treated. Conclusions: There are a high variety of physical therapy treatments to improve the symptomatology of MTrPs when affect triceps surae muscle. Even so, not a single study analyzing the skeletal muscle contractile parameters (as maximal displacement or delay time) change with MTrPS therapy has been found. The treatments have to better specificity the methodology used in the futures investigation.

Keywords: fascia, myofascial trigger points, physical therapy, triceps surae

Procedia PDF Downloads 127
2880 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage

Procedia PDF Downloads 369
2879 Contribution in Fatigue Life Prediction of Composite Material

Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab

Abstract:

The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.

Keywords: fatigue, damage acumulation, composite, evolution

Procedia PDF Downloads 468
2878 Effects of Branched-Chain Amino Acid Supplementation on Sarcopenic Patients with Liver Cirrhosis

Authors: Deepak Nathiya1, Ramesh Roop Rai, Pratima Singh1, Preeti Raj1, Supriya Suman, Balvir Singh Tomar

Abstract:

Background: Sarcopenia is a catabolic state in liver cirrhosis (LC), accelerated with a breakdown of skeletal muscle to release amino acids which adversely affects survival, health-related quality of life, and response to any underlying disease. The primary objective of the study was to investigate the long-term effect of branched-chain amino acids (BCAA) supplementations on parameters associated with improved prognosis in sarcopenic patients with LC, as well as to evaluate its impact on cirrhotic-related events. Methods: We carried out a 24 week, single-center, randomized, open-label, controlled, two cohort parallel-group intervention trial comparing the efficacy of BCAA against lactoalbumin (L-ALB) on 106 sarcopenic liver cirrhotics. The BCAA (intervention) group was treated with 7.2 g BCAA per whereas, the lactoalbumin group was also given 6.3 g of L-Albumin. The primary outcome was to assess the impact of BCAA on parameters of sarcopenia: muscle mass, muscle strength, and physical performance. The secondary outcomes were to study combined survival and maintenance of liver function changes in laboratory and clinical markers in the duration of six months. Results: Treatment with BCAA leads to significant improvement in sarcopenic parameters: muscle strength, muscle function, and muscle mass. The total cirrhotic-related complications and cumulative event-free survival occurred fewer in the BCAA group than in the L-ALB group. Prognostic markers also improved significantly in the study. Conclusion: The current clinical trial demonstrated that long-term BCAAs supplementation improved sarcopenia and prognostic markers in patients with advanced liver cirrhosis.

Keywords: sarcopenia, liver cirrhosis, BCAA, quality of life

Procedia PDF Downloads 111
2877 Puereria mirifica Replacement Improves Skeletal Muscle Performance Associated with Increasing Parvalbumin Levels in Ovariectomized Rat

Authors: Uraporn Vongvatcharanon, Kochakorn Sukjan, Wandee Udomuksorn, Ekkasit Kumarnsit, Surapong Vongvatcharanon

Abstract:

Sarcopenia is a loss of muscle mass, and strength frequently found in menopause. Estrogen replacement has been shown to improve such a loss of muscle functions. However, there is an increased risk of cancer that has to be considered because of the estrogen replacement therapy. Thus, phytoestrogen supplementation has been suggested as an alternative therapy. Pueraria mirifica (PM) is a plant in the family Leguminosae, that is known to be phytoestrogen-rich and has been traditionally used for the treatment of menopausal symptoms. It contains isoflavones and other compounds such as miroestrol and its derivatives. Parvalbumin (PV) is a calcium binding protein and functions as a relaxing factor in fast twitch muscle fibers. A decrease of the PV level results in a reduction of the speed of the twitch relaxation. Therefore, this study aimed to investigate the effect of an ethanolic extract from Pueraria mirifica on the estrogen levels, skeletal muscle functions and PV levels in the extensor digitorum longus (EDL) and gastrocnemius of ovariectomized rats. Twelve-week old female Wistar rats (200-250 g) were divided into 6 groups: SHAM (un-ovariectomized rats, that received double distilled water), PM-0 (ovariectomized rats, OVX, receiving double distilled water), E (OVX, receiving an estradiol benzoate dose of 0.04 mg/kg), PM-50 (OVX receiving PM 50 mg/kg), PM-500 (OVX receiving PM 500 mg/kg), PM-1000 (OVX receiving PM 1000 mg/kg) all for 90 days. The PM-0 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation and parvalbumin levels of both EDL and gastrocnemius that were significantly reduced compared to those of the SHAM group (p<0.05). Also the α and β estrogen receptor immunoreactivities and the parvalbumin immunoreactivities of both EDL and gastrocnemius were decreased in the PM-0 group. In contrast the E, PM-50, PM-500 and PM-1000 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation of both EDL and gastrocnemius that were significantly increased compared with PM-0 group (p<0.05). In addition, the α and β estrogen receptor immunoreactivities and parvalbumin immunoreactivity of both the EDL and gastrocnemius were increased in the E, PM-50, PM-500 and PM-1000 group. In addition the extract of Pueraria mirifica replacement group at 50 and 500 mg/kg had significantly increased parvalbumin levels in the EDL muscle but in the gastrocnemius, only the dose of 500 mg/kg increased the parvalbumin levels (p<0.05). These results have demonstrated that the use of the Pueraria mirifica extract as a replacement therapy for estrogen produced estrogenic activity that was similar to that produced by the estradiol benzoate replacement. It seems that the phytoestrogens could bind with the estrogen receptors and stimulate the transcriptional activity to synthesise muscle protein that caused an increase in muscle mass and parvalbumin levels. Thus, muscle synthesis may restore parvalbumin levels resulting in an enhanced relaxation efficiency that would lead to a shortened latent period before the next contraction.

Keywords: Puereria mirifica, Parvalbumin, estrogen, ovariectomized rats

Procedia PDF Downloads 357
2876 An Anatomic Approach to the Lingual Artery in the Carotid Triangle in South Indian Population

Authors: Ashwin Rai, Rajalakshmi Rai, Rajanigandha Vadgoankar

Abstract:

Lingual artery is the chief artery of the tongue and the neighboring structures pertaining to the oral cavity. At the carotid triangle, this artery arises from the external carotid artery opposite to the tip of greater cornua of hyoid bone, undergoes a tortuous course with its first part being crossed by the hypoglossal nerve and runs beneath the digastric muscle. Then it continues to supply the tongue as the deep lingual artery. The aim of this study is to draw surgeon's attention to the course of lingual artery in this area since it can be accidentally lesioned causing an extensive hemorrhage in certain surgical or dental procedures. The study was conducted on 44 formalin fixed head and neck specimens focusing on the anatomic relations of lingual artery. In this study, we found that the lingual artery is located inferior to the digastric muscle and the hypoglossal nerve contradictory to the classical description. This data would be useful during ligation of lingual artery to avoid injury to the hypoglossal nerve in surgeries related to the anterior triangle of neck.

Keywords: anterior triangle, digastric muscle, hypoglossal nerve, lingual artery

Procedia PDF Downloads 155
2875 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

Authors: Luen Chow Chan

Abstract:

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Keywords: bike frame sizes, cadence rate, pedaling power, seat height

Procedia PDF Downloads 99
2874 Quality of Life after Damage Control Laparotomy for Trauma

Authors: Noman Shahzad, Amyn Pardhan, Hasnain Zafar

Abstract:

Introduction: Though short term survival advantage of damage control laparotomy in management of critically ill trauma patients is established, there is little known about the long-term quality of life of these patients. Facial closure rate after damage control laparotomy is reported to be 20-70 percent. Abdominal wall reconstruction in those who failed to achieve facial closure is challenging and can potentially affect quality of life of these patients. Methodology: We conducted retrospective matched cohort study. Adult patients who underwent damage control laparotomy from Jan 2007 till Jun 2013 were identified through medical record. Patients who had concomitant disabling brain injury or limb injuries requiring amputation were excluded. Age, gender and presentation time matched non exposure group of patients who underwent laparotomy for trauma but no damage control were identified for each damage control laparotomy patient. Quality of life assessment was done via telephonic interview at least one year after the operation, using Urdu version of EuroQol Group Quality of Life (QOL) questionnaire EQ5D after permission. Wilcoxon signed rank test was used to compare QOL scores and McNemar test was used to compare individual parameters of QOL questionnaire. Study was approved by institutional ethical review committee. Results: Out of 32 patients who underwent damage control laparotomy during study period, 20 fulfilled the selection criteria for which 20 matched controls were selected. Median age of patients (IQ Range) was 33 (26-40) years. Facial closure rate in damage control laparotomy group was 40% (8/20). One third of those who did not achieve facial closure (4/12) underwent abdominal wall reconstruction. Self-reported QOL score of damage control laparotomy patients was significantly worse than non-damage control group (p = 0.032). There was no statistically significant difference in two groups regarding individual QOL measures. Significantly, more patients in damage control group were requiring use of abdominal binder, and more patients in damage control group had to either change their job or had limitations in continuing previous job. Our study was not adequately powered to detect factors responsible for worse QOL in damage control group. Conclusion: Quality of life of damage control patients is worse than their age and gender matched patients who underwent trauma laparotomy but not damage control. Adequately powered studies need to be conducted to explore factors responsible for this finding for potential improvement.

Keywords: damage control laparotomy, laparostomy, quality of life

Procedia PDF Downloads 250
2873 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 279
2872 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 261
2871 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 301
2870 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model

Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati

Abstract:

Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.

Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction

Procedia PDF Downloads 89
2869 Long Standing Orbital Floor Fracture Repair: Case Report

Authors: Hisham A. Hashem, Sameh Galal, Bassem M. Moeshed

Abstract:

A 36 years old male patient presented to our unit with a history of motor-car accident from 7 months complaining of disfigurement and double vision. On examination and investigations, there was an orbital floor fracture in the left eye with inferior rectus muscle entrapment causing diplopia, dystopia and enophthalmos. Under general anesthesia, a sub-ciliary incision was performed, and the orbital floor fracture was repaired with a double layer Medpor sheet (30x50x15) with removing and freeing fibrosis that was present and freeing of the inferior rectus muscle. Remarkable improvement of the dystopia was noticed, however, there was a residual diplopia in upgaze and enophthalmos. He was then referred to a strabismologist, which upon examination found left hypotropia of 8 ΔD corrected by 8 ΔD base up prism and positive forced duction test on elevation and pseudoptosis. Under local anesthesia, a limbal incision approach with hangback 4mm recession of inferior rectus muscle was performed after identifying an inferior rectus muscle structure. Improvement was noted shortly postoperative with correction of both diplopia and pseudoptosis. Follow up after 1, 4 and 8 months was done showing a stable condition. Delayed surgery in cases of orbital floor fracture may still hold good results provided proper assessment of the case with management of each sign separately.

Keywords: diplopia, dystopia, late surgery, orbital floor fracture

Procedia PDF Downloads 208
2868 Efficacy of Botulinum Toxin in Alleviating Pain Syndrome in Stroke Patients with Upper Limb Spasticity

Authors: Akulov M. A., Zaharov V. O., Jurishhev P. E., Tomskij A. A.

Abstract:

Introduction: Spasticity is a severe consequence of stroke, leading to profound disability, decreased quality of life and decrease of rehabilitation efficacy [4]. Spasticity is often associated with pain syndrome, arising from joint damage of paretic limbs (postural arthropathy) or painful spasm of paretic limb muscles. It is generally accepted that injection of botulinum toxin into a cramped muscle leads to decrease of muscle tone and improves motion range in paretic limb, which is accompanied by pain alleviation. Study aim: To evaluate the change in pain syndrome intensity after incections of botulinum toxin A (Xeomin) in stroke patients with upper limb spasticity. Patients and methods. 21 patients aged 47-74 years were evaluated. Inclusion criteria were: acute stroke 4-7 months before the inclusion into the study, leading to spasticity of wrist and/or finger flexors, elbow flexor or forearm pronator, associated with severe pain syndrome. Patients received Xeomin as monotherapy 90-300 U, according to spasticity pattern. Efficacy evaluation was performed using Ashworth scale, disability assessment scale (DAS), caregiver burden scale and global treatment benefit assessment on weeks 2, 4, 8 and 12. Efficacy criterion was the decrease of pain syndrome by week 4 on PQLS and VAS. Results: The study revealed a significant improvement of measured indices after 4 weeks of treatment, which persisted until the 12 week of treatment. Xeomin is effective in reducing muscle tone of flexors of wrist, fingers and elbow, forearm pronators. By the 4th week of treatment we observed a significant improvement on DAS (р < 0,05), Ashworth scale (1-2 points) in all patients (р < 0,05), caregiver burden scale (р < 0,05). A significant decrease of pain syndrome by the 4th week of treatment on PQLS (р < 0,05) и VAS (р < 0,05) was observed. No adverse effect were registered. Conclusion: Xeomin is an effective treatment of pain syndrome in postural upper limb spasticity after stroke. Xeomin treatment leads to a significant improvement on PQLS and VAS.

Keywords: botulinum toxin, pain syndrome, spasticity, stroke

Procedia PDF Downloads 285
2867 Collapse Capacity and Energy Absorption Mechanism of High Rise Steel Moment Frame Considering Aftershock Effects

Authors: Mohammadmehdi Torfehnejad, Serhan Sensoy

Abstract:

Many structures sustain damage during a mainshock earthquake but undergo severe damage under aftershocks following the mainshock. Past researches have studied aftershock effects through different methodologies, but few structural systems have been evaluated for these effects. Collapse capacity and energy absorption mechanism of the Special Steel Moment Frame (SSMF) system is evaluated in this study, under aftershock earthquakes when prior damage is caused by the mainshock. A twenty-story building is considered in assessing the residual collapse capacity and energy absorption mechanism under aftershock excitation. In addition, various levels of mainshock damage are considered and reflected through two different response parameters. Aftershock collapse capacity is estimated using incremental dynamic analysis (IDA) applied following the mainshock. The study results reveal that the collapse capacity of high-rise structures undergoes a remarkable reduction for high level of mainshock damage. The energy absorption in the columns is decreased by increasing the level of mainshock damage.

Keywords: seismic collapse, mainshock-aftershock effect, incremental dynamic analysis, energy absorption

Procedia PDF Downloads 108
2866 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 189
2865 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay

Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango

Abstract:

The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.

Keywords: artificial vision, comet assay, DNA damage, image processing

Procedia PDF Downloads 275
2864 Assessment of Transverse Abdominis Activation during Three Different Exercises in Low Back Pain Patients: Measurement with Real-Time Ultrasonography

Authors: Venus Pagare, Amit Kharat, Dhaval K. Thakkar, Tushar J. Palekar

Abstract:

Introduction: Chronic low back pain (CLBP) is a major public health problem and is the leading musculoskeletal cause of disability. Altered neuromuscular control of core muscles, particulary transverses abdominis (TrA) is thought to be a contributing factor for the development of CLBP. Therefore, various exercises targeting the TrA are commonly incorporated into the rehabilitation. Objectives: To investigate the effects of 3 different core exercises on activation capacity of TrA muscle in individuals with CLBP as compared with healthy controls. Methodology: Thickness of TrA muscle was measured by ultrasound imaging in 30 patients with CLBP and 30 healthy controls. Measurements were taken during 3 different TrA activation exercises i.e Abdominal drawing in maneuver (ADIM), Abdominal drawing in with straight leg raise (ADSLR) and breathe hold at maximum expiration (ME). Thickness of the muscle at rest (at the end of normal tidal expiration) was taken as a baseline measure. Results: There was a significant difference between the healthy subjects and patients with low back pain with regard to the thickness of TrA at rest and thickness during contraction. ADIM produced a significant increase in the thickness of TrA compared to ADSLR and ME (p<0.001). Also, increase in thickness of TrA was more in the control group than patients with low back pain. Conclusion: CLBP patients exhibited atrophy of TrA muscle with delayed activation. Also, of the various core exercises, ADIM can be an effective method for activation of TrA.

Keywords: LBP, CLBP, ADSLR, ADIM

Procedia PDF Downloads 287
2863 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response

Authors: Reza Behboodian

Abstract:

Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.

Keywords: failure, time history analysis, dynamic response, strain energy

Procedia PDF Downloads 104
2862 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia

Authors: Aroma Elmina Martha

Abstract:

Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.

Keywords: abration, environmental damage, mining, shoreline

Procedia PDF Downloads 298
2861 Sexually Dimorphic Effects of Chronic Exercise and Myocytic Androgen Receptor Overexpression on Body Composition in Sprague dawley Rats

Authors: Sabrina Barsky, Ashley Monks

Abstract:

In humans, exercise improves symptoms of various pathological states, although exercise adaptations seem to differ in response to sex. Skeletal muscle anabolism is thought to be regulated by androgen receptor (AR) through poorly specified mechanisms. Interactions of AR and exercise on muscle phenotype remain inconclusive in males, and undetermined in females. We hypothesized that sex differences in exercise adaptations are regulated by the androgenic system and the type of exercise performed. Here we examined interactions between a muscle-specific AR overexpression transgene (HSA-AR) and forced aerobic exercise paradigm on muscle and adipose exercise adaptation in male and female rats. We used dual-energy X-ray absorptiometry (DXA) to examine body composition adaptations post 9-week exercise protocol. We replicated the effects of HSA-AR on body composition, with males only having increased % lean mass and reduced % fat mass (P<0.05). Aerobic exercise improved lean body phenotype significantly, with lesser indices of total and % fat mass (P<0.01) in both sexes. Sex-specific effects of exercise included decreased total body mass (P<0.01) in males and increased lean mass % (P<0.001) in females. Surprisingly, neither AR manipulation nor exercise affected bone parameters in either sex. This varied response in total mass and lean mass according to exercise presents a sexually dimorphic response to exercise. Neither sex showed an interaction between HSA-AR and forced aerobic exercise on body composition. Future work is proposed to examine the effects of exercise type (aerobic versus resistance) and the role of gonadal androgens in sexually dimorphic exercise-mediated mitochondrial adaptations. This work implicates the development of sex-specific exercise therapies.

Keywords: androgen receptor, forced exercise, muscle physiology, sexual dimorphism

Procedia PDF Downloads 100
2860 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Authors: Andrej Golowin, Viktor Denk, Axel Riepe

Abstract:

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Keywords: combined fatigue, damage tolerance, engine, surface treatment

Procedia PDF Downloads 452
2859 Automatic Identification of Pectoral Muscle

Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina

Abstract:

Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.

Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle

Procedia PDF Downloads 324
2858 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage

Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves

Abstract:

Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.

Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device

Procedia PDF Downloads 273