Search results for: insulated concrete form
7729 Effect of Tapioca Starch on Fresh Properties Concrete
Authors: C. Samita, W. Chalermchai
Abstract:
This project is aimed to be a preliminary study of using Tapioca Starch as a viscosity modifying agent (VMA) in concrete work. Tapioca starch effects on the viscosity of concrete, which could be investigated from the workability of corresponding mortar. Cement only mortars with water to cement ratio (w/c) 0.25 to 0.48, superplasticizer dosage of 1% to 2.5%, starch concentration of 0%, 0.25% and 0.5%, was tested for workability. Mortar mixes that have equivalent workability (flow diameter of 250 mm, and funnel flow time of 5 seconds) for each starch concentration were identified and checked for concrete properties. Concrete were tested for initial workability, workability loss, bleeding, setting times, and compressive strength. The results showed that all concrete mixes provide same initial workability, however the mix with higher starch concentration provides slower loss. Bleeding occurs when concrete has w/c more than 0.45. For setting times, mixing with higher starch concentration provide longer setting times (around 4 hours in this experiment). Compressive strength of starch concretes which always have higher w/c, are lower than that of cement only concrete as in this experiment initial workability were controlled to be same.Keywords: viscosity modifying agent(VMA), self-leveling concrete, self-compacting concrete(SCC), low-binder SCC
Procedia PDF Downloads 2977728 Study of Ladle Furnace Slag as Mineral Filler in Asphalt Concrete with Electric Arc Furnace Slag
Authors: W. J. Wang, D. F. Lin, L. Y. Chen, K. Y. Liu
Abstract:
In this study, the ladle furnace slag was used as a mineral filler in asphalt concrete with electric arc furnace slag (EAF asphalt concrete) to investigate the effect on the engineering and thermal properties of asphalt cement mastics and EAF asphalt concrete, the lime was used as a comparison for mineral filler, and the usage percentage of mineral filler was set at 2%, 4%, 6%, and 8%. First of all, the engineering properties of the ladle furnace slag and lime were compared, and then the mineral filler was mixed with bitumen to form the asphalt cement mastics in order to analyze the influence of the ladle furnace slag on the properties of asphalt cement mastics, and lastly, the mineral filler was used in the EAF asphalt concrete to analyze its feasibility of using ladle furnace slag as a mineral filler. The study result shows that the ladle furnace slag and the lime have no obvious difference in their physical properties, and from the energy dispersive spectrometer (EDS) test results, we know that the lime and the ladle furnace slag have similar elemental composition, but the Ca found in the ladle furnace slag belongs to CaO, and the lime belongs to CaCO3, therefore the ladle furnace slag has the property of expansion. According to the test results, the viscosity of asphalt cement mastics will increase with the increase in the use of mineral filler. Since the ladle furnace slag has more CaO content, the viscosity of the asphalt cement mastics with ladle furnace slag will increase more than using lime as mineral filler in the asphalt cement mastics, and the use of ladle furnace slag only needs to be 2% in order to achieve the effect of anti-peeling which is 6% for lime. From the related test results of EAF asphalt concrete, it is known that the maximum stability value can be obtained when the use of mineral filler is about 5%. When the ladle furnace slag is used as the mineral filler, it can improve the stiffness, indirect tension strength, spalling resistance, and thermal insulation of EAF asphalt concrete, which also indicates that using the ladle furnace slag as the mineral filler of bitumen can help to improve the durability of the asphalt pavement.Keywords: ladle furnace slag, mineral filler, asphalt cement mastics, EAF asphalt concrete
Procedia PDF Downloads 857727 Time-Dependent Analysis of Composite Steel-Concrete Beams Subjected to Shrinkage
Authors: Rahal Nacer, Beghdad Houda, Tehami Mohamed, Souici Abdelaziz
Abstract:
Although the shrinkage of the concrete causes undesirable parasitic effects to the structure, it can then harm the resistance and the good appearance of the structure. Long term behaviourmodelling of steel-concrete composite beams requires the use of the time variable and the taking into account of all the sustained stress history of the concrete slab constituting the cross section. The work introduced in this article is a theoretical study of the behaviour of composite beams with respect to the phenomenon of concrete shrinkage. While using the theory of the linear viscoelasticity of the concrete, and on the basis of the rate of creep method, in proposing an analytical model, made up by a system of two linear differential equations, emphasizing the effects caused by shrinkage on the resistance of a steel-concrete composite beams. Results obtained from the application of the suggested model to a steel-concrete composite beam are satisfactory.Keywords: composite beams, shrinkage, time, rate of creep method, viscoelasticity theory
Procedia PDF Downloads 5287726 The Effects of Various Curing Compounds on the Mechanical Characteristics of Roller Compacted Concrete Pavements (RCCP)
Authors: Azadeh Askarinejad, Parmida Hayati, Parham Hayati, Reza Parchami
Abstract:
Curing is a very important factor in the ultimate strength and durability of roller compacted concrete pavements (RCCP). Curing involves keeping the concrete is saturated or close to saturation point. Since maintaining concrete moisture has a significant impact on its mechanical properties, permeability and durability, curing is important. The most common procedure for curing of roller compacted concrete is using a white pigmented curing compound. This method is effective, economical and fast. In the present study, different curing compounds were applied on concrete specimens and the results of their effects on the mechanical properties were compared with each other and usual methods of curing in order to select appropriate materials and methods of curing for RCCP construction.Keywords: curing compounds, roller compacted concrete pavements, mechanical properties, durability
Procedia PDF Downloads 6227725 Estimation Model for Concrete Slump Recovery by Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery
Procedia PDF Downloads 1997724 Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic
Authors: Yasuyuki Nabeshima
Abstract:
Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void.Keywords: tunnel, lining concrete, void, non-destructive inspection, ultrasonic
Procedia PDF Downloads 2137723 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns
Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar
Abstract:
Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.Keywords: concrete damaged plasticity, ground improvement, load-bearing capacity, pervious concrete pile
Procedia PDF Downloads 2297722 Enhancement of Dune Sand from the Western Erg (Algeria) in the Formulation of New Concrete
Authors: Ahmed Tafraoui, Gilles Escadeillas, Thierry Vidal
Abstract:
The southern Algeria is known for its huge sand dunes that cover part of its territory (Sahara). This sand has features that allow a glimpse of a recovery in the construction field in the form of Ultra High Performance Concrete (UHPC). This type of concrete using a large amount of silica fume, ultra fine addition that gives very high performance but is also relatively rare and expensive. Replacing it with another addition to equivalent properties, such as metakaolin, can also be considered. The objective of this study is to both enhance the sand dunes of Erg south west western Algeria but also reduce manufacturing costs of Ultra High Performance Concrete to incorporating metakaolin to instead of silica fume. Performances to determine mechanical performance are instantaneous, compression and bending. Initially, we characterized the Algerian sand dune. Then, we have to find a formulation of UHPC, adequate in terms of implementation and to replace silica fume by metakaolin. Finally, we studied the actual value of the sand dune. Concrete obtained have very high mechanical performance, up to a compressive strength of 250 MPa, a tensile strength of 45 MPa by bending with the method of heat treatment. This study shows that the enhancement of dune sand studied is quite possible in UHPC, and in particular UHPC bundles and the replacement of silica fume by metakaolin do not alter the properties of these concretes.Keywords: Ultra High Performance Concrete, sand dune, formulations, silica fume, metakaolin, strength
Procedia PDF Downloads 4707721 Durability Properties of Foamed Concrete with Fiber Inclusion
Authors: Hanizam Awang, Muhammad Hafiz Ahmad
Abstract:
An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glass, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000 kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4 %. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.Keywords: foamed concrete, fibres, durability, construction, geological engineering
Procedia PDF Downloads 4477720 Recycled Plastic Fibers for Controlling the Plastic Shrinkage Cracking of Concrete
Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy
Abstract:
Manufacturing of fibers from industrial or postconsumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of Plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of concrete. The results indicate that recycled plastic RP fiber of 50 mm length is capable of controlling plastic shrinkage cracking of concrete to some extent, but are not as effective as polypropylene PP fibers when added at the same volume fraction. Furthermore, test results indicated that there was The increase in flexural strength of RP fibers and PP fibers concrete were 12.34% and 40.30%, respectively in comparison to plain concrete. RP fiber showed a substantial increase in toughness and a slight decrease in flexural strength of concrete at a fiber volume fraction of 1.00% compared to PP fibers at fiber volume fraction of 0.50%. RP fibers caused a significant increase in compressive strengths up to 13.02% compared to concrete without fiber reinforcement.Keywords: concrete, plastic, shrinkage cracking, compressive strength, flexural strength, toughness, RF recycled fibers, polypropylene PP fibers
Procedia PDF Downloads 5627719 Behaviour of Hollow Tubes Filled with Sand Slag Concrete
Authors: Meriem Senani, Noureedine Ferhoune
Abstract:
This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load, the cross section dimensions were: 100x70x2 mm. A total of 16 stubs have been tested, as follows: 4 filled with ordinary concrete appointed by BO columns, 6 filled with concrete witch natural sand was completely substitute a crystallized sand slag designated in this paper by BSI, and 6 others were tucked in concrete whose natural sand was partially replace by a crystallized sand slag called by BSII. The main objectives of these tests were to clarify the steel specimen's performance filled by concrete sand compared to those filled with ordinary concrete. The main parameters studied are: The height of the specimen (300mm-500mm), eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes, has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex warping of the largest, followed by the smallest due to the outward thrust of the concrete, it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.Keywords: concrete sand, crystallized slag, failure mode, buckling
Procedia PDF Downloads 4147718 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology
Authors: Dibyendu Adak, Saroj Mandal
Abstract:
The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures
Procedia PDF Downloads 1637717 Getting to Know the Types of Asphalt, Its Manufacturing and Processing Methods and Its Application in Road Construction
Authors: Hamid Fallah
Abstract:
Asphalt is generally a mixture of stone materials with continuous granulation and a binder, which is usually bitumen. Asphalt is made in different shapes according to its use. The most familiar type of asphalt is hot asphalt or hot asphalt concrete. Stone materials usually make up more than 90% of the asphalt mixture. Therefore, stone materials have a significant impact on the quality of the resulting asphalt. According to the method of application and mixing, asphalt is divided into three categories: hot asphalt, protective asphalt, and cold asphalt. Cold mix asphalt is a mixture of stone materials and mixed bitumen or bitumen emulsion whose raw materials are mixed at ambient temperature. In some types of cold asphalt, the bitumen may be heated as necessary, but other materials are mixed with the bitumen without heating. Protective asphalts are used to make the roadbed impermeable, increase its abrasion and sliding resistance, and also temporarily improve the existing asphalt and concrete surfaces. This type of paving is very economical compared to hot asphalt due to the speed and ease of implementation and the limited need for asphalt machines and equipment. The present article, which is prepared in descriptive library form, introduces asphalt, its types, characteristics, and its application.Keywords: asphalt, type of asphalt, asphalt concrete, sulfur concrete, bitumen in asphalt, sulfur, stone materials
Procedia PDF Downloads 687716 Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand
Authors: Ravande Kishore
Abstract:
The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry.Keywords: construction material, partial replacement, marble dust, compressive strength
Procedia PDF Downloads 4287715 Sustainability of Carbon Nanotube-Reinforced Concrete
Authors: Rashad Al Araj, Adil K. Tamimi
Abstract:
Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.Keywords: sustainability, carbon nano tube, microsilica, concrete
Procedia PDF Downloads 3387714 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members
Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim
Abstract:
Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.Keywords: prestressed concrete members, high strength reinforcing bars, high strength concrete, shear behavior
Procedia PDF Downloads 3007713 Mechanical Properties and Shrinkage and Expansion Assessment of Rice Husk Ash Concrete and Its Comparison with the Control Concrete
Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin
Abstract:
The possibility of using of rice husk ash (RHA) of Guilan (a province located in the north of Iran) (RHA) in concrete was studied by performing experiments. Mechanical properties and shrinkage and expansion of concrete containing different percentage of RHA and the control concrete consisting of cement type II were investigated. For studying, a number of cube and prism concrete specimens containing of 5 to 30% of RHA with constant water to binder ratio of 0.4 were casted and the compressive strength, tensile strength, shrinkage and expansion for water curing conditions up to 360 days were measured. The tests results show that the cement replacement of rice husk ash (RHA) caused both the quality and mechanical properties alterations. It is shown that the compressive strength, tensile strength increase also shrinkage and expansion of specimens were increased that should be controlled in mass concrete structures.Keywords: rice husk ash, mechanical properties, shrinkage and expansion, Pozzolan
Procedia PDF Downloads 4107712 Concrete Mixes for Sustainability
Authors: Kristyna Hrabova, Sabina Hüblova, Tomas Vymazal
Abstract:
Structural design of concrete structure has the result in qualities of structural safety and serviceability, together with durability, robustness, sustainability and resilience. A sustainable approach is at the heart of the research agenda around the world, and the Fibrillation Commission is also working on a new model code 2020. Now it is clear that the effects of mechanical, environmental load and even social coherence need to be reflected and included in the designing and evaluating structures. This study aimed to present the methodology for the sustainability assessment of various concrete mixtures.Keywords: concrete, cement, sustainability, Model Code 2020
Procedia PDF Downloads 1787711 Evaluating of Turkish Earthquake Code (2007) for FRP Wrapped Circular Concrete Cylinders
Authors: Guler S., Guzel E., Gulen M.
Abstract:
Fiber Reinforced Polymer (FRP) materials are commonly used in construction sector to enhance the strength and ductility capacities of structural elements. The equations on confined compressive strength of FRP wrapped concrete cylinders is described in the 7th chapter of the Turkish Earthquake Code (TEC-07) that enter into force in 2007. This study aims to evaluate the applicability of TEC-07 on confined compressive strengths of circular FRP wrapped concrete cylinders. To this end, a large number of data on circular FRP wrapped concrete cylinders are collected from the literature. It is clearly seen that the predictions of TEC-07 on circular FRP wrapped the FRP wrapped columns is not same accuracy for different ranges of concrete strengths.Keywords: Fiber Reinforced Polymer (FRP), concrete cylinders, Turkish Earthquake Code, earthquake
Procedia PDF Downloads 5187710 Reliability Levels of Reinforced Concrete Bridges Obtained by Mixing Approaches
Authors: Adrián D. García-Soto, Alejandro Hernández-Martínez, Jesús G. Valdés-Vázquez, Reyna A. Vizguerra-Alvarez
Abstract:
Reinforced concrete bridges designed by code are intended to achieve target reliability levels adequate for the geographical environment where the code is applicable. Several methods can be used to estimate such reliability levels. Many of them require the establishment of an explicit limit state function (LSF). When such LSF is not available as a close-form expression, the simulation techniques are often employed. The simulation methods are computing intensive and time consuming. Note that if the reliability of real bridges designed by code is of interest, numerical schemes, the finite element method (FEM) or computational mechanics could be required. In these cases, it can be quite difficult (or impossible) to establish a close-form of the LSF, and the simulation techniques may be necessary to compute reliability levels. To overcome the need for a large number of simulations when no explicit LSF is available, the point estimate method (PEM) could be considered as an alternative. It has the advantage that only the probabilistic moments of the random variables are required. However, in the PEM, fitting of the resulting moments of the LSF to a probability density function (PDF) is needed. In the present study, a very simple alternative which allows the assessment of the reliability levels when no explicit LSF is available and without the need of extensive simulations is employed. The alternative includes the use of the PEM, and its applicability is shown by assessing reliability levels of reinforced concrete bridges in Mexico when a numerical scheme is required. Comparisons with results by using the Monte Carlo simulation (MCS) technique are included. To overcome the problem of approximating the probabilistic moments from the PEM to a PDF, a well-known distribution is employed. The approach mixes the PEM and other classic reliability method (first order reliability method, FORM). The results in the present study are in good agreement whit those computed with the MCS. Therefore, the alternative of mixing the reliability methods is a very valuable option to determine reliability levels when no close form of the LSF is available, or if numerical schemes, the FEM or computational mechanics are employed.Keywords: structural reliability, reinforced concrete bridges, combined approach, point estimate method, monte carlo simulation
Procedia PDF Downloads 3467709 Effect of the Concrete Cover on the Bond Strength of the FRP Wrapped and Non-Wrapped Reinforced Concrete Beam with Lap Splice under Uni-Direction Cyclic Loading
Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah
Abstract:
Many of the reinforced concrete structures subject to cyclic load constructed before the modern bond and fatigue design code. One of the main issue face on exists structure is the bond strength of the longitudinal steel bar and the surrounding concrete. A lap splice is a common connection method to transfer the force between the steel rebar in a reinforced concrete member. Usually, the lap splice is the weak connection on the bond strength. Fatigue flexural loading imposes severe demands on the strength and ductility of the lap splice region in reinforced concrete structures and can lead to a brittle and sudden failure of the member. This paper investigates the effect of different concrete covers on the fatigue bond strength of reinforcing concrete beams containing a lap splice under a fatigue loads. It includes tests of thirty-seven beams divided into three groups. Each group has beams with 30 mm and 50 mm clear side and bottom concrete covers. The variables that were addressed where the concrete cover, the presence or absence of CFRP or GFRP sheet wrapping, the type of loading (monotonic or fatigue) and the fatigue load ranges. The test results showed that an increase in the concrete cover led to an increase in the bond strength under both monotonic and fatigue loading for both the unwrapped and wrapped beams. Also, the FRP sheets increased both the fatigue strength and the ductility for both the 30 mm and the 50 mm concrete covers.Keywords: bond strength, fatigue, Lap splice, FRp wrapping
Procedia PDF Downloads 4877708 Investigating the Systematic Implications of Plastic Waste Additions to Concrete Taking a Circular Approach
Authors: Christina Cheong, Naomi Keena
Abstract:
In the face of growing urbanization the construction of new buildings is inevitable and with current construction methods leading to environmental degradation much questioning is needed around reducing the environmental impact of buildings. This paper explores the global environmental issue of concrete production in parallel with the problem of plastic waste, and questions if new solutions into plastic waste additions in concrete is a viable sustainable solution with positive systematic implications to living systems, both human and non-human. We investigate how certification programs can be used to access the sustainability of the new concrete composition. With this classification we look to the health impacts as well as reusability of such concrete in a second or third life cycle. We conclude that such an approach has benefits to the environment and that taking a circular approach to its development, in terms of the overall life cycle of the new concrete product, can help understand the nuances in terms of the material’s environmental and human health impacts.Keywords: Concrete, Plastic waste additions to concrete, sustainability ratings, sustainable materials
Procedia PDF Downloads 1507707 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete
Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton
Abstract:
Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.Keywords: perlite concrete, poly-lactic acid (pla), expanded polystyrene (eps), concrete
Procedia PDF Downloads 3147706 Fire Performance of Fly Ash Concrete with Pre-Fire Load
Authors: Kunjie Fan
Abstract:
Fly ash has been widely used as supplemental cementitious material in concrete for decades, especially in the ready-mixed concrete industry. Addition of fly ash not only brings economic and environmental benefits but also improves the engineering properties of concrete. It is well known that the pre-fire load has significant impacts on mechanical properties of concrete at high temperatures, however, the fire performance of stressed fly ash concrete is still not clear. Therefore, an apparatus was specially designed for testing “hot” mechanical properties of fly ash concrete with different heating-loading regimes. Through the experimental research, the mechanical properties, including compressive strength, peak strain, elastic modulus, complete stress-strain relationship, and transient thermal creep of fly ash concrete under uniaxial compression at elevated temperatures, have been investigated. It was found that the compressive strength and the elastic modulus increase with the load level, while the peak strain decreases with the applied stress level. In addition, 25% replacement of OPC with FA in the concrete mitigated the deterioration of the compressive strength, the development of transient thermal creep, and the nonlinearity of stress-strain response at elevated temperatures but hardly influenced the value of the elastic modulus and the peak strain. The applicability of Eurocode EN1992-1-2 to normal strength concrete with 25% replacement of fly ash has been verified to be safe. Based on the experimental analysis, an advanced constitutive model for stressed fly ash concrete at high temperatures was proposed.Keywords: fire performance, fly ash concrete, pre-fire load, mechanical properties, transient thermal creep
Procedia PDF Downloads 857705 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates
Authors: Gavin Gengan, Hsein Kew
Abstract:
Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concreteKeywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic
Procedia PDF Downloads 2087704 A Review of Self-Healing Concrete and Various Methods of Its Scientific Implementation
Authors: Davoud Beheshtizadeh, Davood Jafari
Abstract:
Concrete, with its special properties and advantages, has caused it to be widely and increasingly used in construction industry, especially in infrastructures of the country. On the other hand, some defects of concrete and, most importantly, micro-cracks in the concrete after setting have caused the cost of repair and maintenance of infrastructure; therefore, self-healing concretes have been of attention in other countries in the recent years. These concretes have been repaired with general mechanisms such as physical, chemical, biological and combined mechanisms, each of which has different subsets and methods of execution and operation. Also, some of these types of mechanisms are of high importance, which has led to a special production method, and as this subject is new in Iran, this knowledge is almost unknown or at least some part of it has not been considered at all. The present article completely introduces various self-healing mechanisms as a review and tries to present the disadvantages and advantages of each method along with its scope of application.Keywords: micro-cracks, self-healing concrete, microcapsules, concrete, cement, self-sensitive
Procedia PDF Downloads 1457703 Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement
Authors: Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri, Hassan Fazaeli, Amir Ali Amini
Abstract:
Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements.Keywords: concrete pavement, mechanical properties, macro polypropylene fibers, micro polypropylene fibers
Procedia PDF Downloads 1567702 Sustainable Underground Structures Through Soil-Driven Bio-Protection of Concrete
Authors: Abdurahim Abogdera, Omar Hamza, David Elliott
Abstract:
The soil bacteria can be affected by some factors such as pH, calcium ions and Electrical conductivity. Fresh concrete has high pH value, which is between 11 and 13 and these values will be prevented the bacteria to produce CO₂ to participate with Calcium ions that released from the concrete to get calcite. In this study we replaced 15% and 25% of cement with Fly ash as the fly ash reduce the value of the pH at the concrete. The main goal of this study was investigated whether bacteria can be used on the soil rather than in the concrete to avoid the challenges and limitations of containing bacteria inside the concrete. This was achieved by incubating cracked cement mortar specimens into fully saturated sterilized and non-sterilized soil. The crack sealing developed in the specimens during the incubation period in both soil conditions were evaluated and compared. Visual inspection, water absorption test, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) were conducted to evaluate the healing process.Keywords: pH, calcium ions, MICP, salinity
Procedia PDF Downloads 1167701 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking
Authors: W. C. Bracken
Abstract:
Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.Keywords: concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation
Procedia PDF Downloads 2487700 Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete
Authors: Sikiru F. Oritola, Abd Latif Saleh, Abd Rahman Mohd Sam, Rozana Zakaria, Mushairry Mustaffar
Abstract:
The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacementKeywords: concrete strength, fine aggregate, fly ash cement, iron ore tailings
Procedia PDF Downloads 670