Search results for: George Trakakis
166 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 479165 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview
Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes
Abstract:
Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality
Procedia PDF Downloads 255164 Digital Repository as a Service: Enhancing Access and Preservation of Cultural Heritage Artefacts
Authors: Lefteris Tsipis, Demosthenes Vouyioukas, George Loumos, Antonis Kargas, Dimitris Varoutas
Abstract:
The employment of technology and digitization is crucial for cultural organizations to establish and sustain digital repositories for their cultural heritage artefacts. This utilization is also essential in facilitating the presentation of cultural works and exhibits to a broader audience. Consequently, in this work, we propose a digital repository that functions as Software as a Service (SaaS), primarily promoting the safe storage, display, and sharing of cultural materials, enhancing accessibility, and fostering a deeper understanding and appreciation of cultural heritage. Moreover, the proposed digital repository service is designed as a multitenant architecture, which enables organizations to expand their reach, enhance accessibility, foster collaboration, and ensure the preservation of their content. Specifically, this project aims to assist each cultural institution in organizing its digital cultural assets into collections and feeding other digital platforms, including educational, museum, pedagogical, and games, through appropriate interfaces. Moreover, the creation of this digital repository offers a cutting-edge and effective open-access laboratory solution. It allows organizations to have a significant influence on their audiences by fostering cultural understanding and appreciation. Additionally, it facilitates the connection between different digital repositories and national/European aggregators, promoting collaboration and information sharing. By embracing this solution, cultural institutions can benefit from shared resources and features, such as system updates, backup and recovery services, and data analytics tools, that are provided by the platform.Keywords: cultural technologies, gaming technologies, web sharing, digital repository
Procedia PDF Downloads 79163 Microplastic Migration from Food Packaging on Cured Meat Products
Authors: Klytaimnistra Katsara, George Kenanakis, Eleftherios Alissandrakis, Vassilis M. Papadakis
Abstract:
In recent decades, microplastics (MPs) attracted the interest of the research community as the level of environmental plastic pollution has increased over the years. Through air inhalation and food consumption, MPs enter the human body, creating a series of possible health issues. The majority of MPs enter through the digestive tract; they migrate from the plastic packaging of the foodstuffs. Several plastics, such as Polyethylene (PE), are commonly used as food packaging material due to their preservation and storage capabilities. In this work, the surfaces of three different cured meat products with varied fat compositions were studied (bacon, mortadella, and salami) to determine the migration of MPs from plastic packaging. Micro-Raman spectroscopic measurements were performed in an experimental set lasting 28 days, where the meat samples were stored in vacuum-sealed low-density polyethylene (LDPE) pouches under refrigeration conditions at 4°C. Specific measurement days (0, 3, 9, 12, 15, and 28 days of storage) were chosen to obtain comparative results. Raman micro-spectroscopy was used to monitor the MPs migration, where the Raman spectral profile of LDPE first appeared on day 9 in Bacon, day 15 in Salami, and finally, on day 28 in Mortadella. All the meat samples on day 28 were tainted because a layer of bacterial outgrowth had developed on their surface. In conclusion, MP migration from food packaging to the surface of the cured meat samples was proven. To minimize the consumption of MPs in cured meat products that are stored in plastic packaging, a short period of storage time under refrigeration conditions is advised.Keywords: cured meat, food packaging, low-density polyethylene, microplastic migration, micro-Raman spectroscopy
Procedia PDF Downloads 70162 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chua, diode, memristor, chaos
Procedia PDF Downloads 87161 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 97160 Role and Impact of Artificial Intelligence in Sales and Distribution Management
Authors: Kiran Nair, Jincy George, Suhaib Anagreh
Abstract:
Artificial intelligence (AI) in a marketing context is a form of a deterministic tool designed to optimize and enhance marketing tasks, research tools, and techniques. It is on the verge of transforming marketing roles and revolutionize the entire industry. This paper aims to explore the current dissemination of the application of artificial intelligence (AI) in the marketing mix, reviewing the scope and application of AI in various aspects of sales and distribution management. The paper also aims at identifying the areas of the strong impact of AI in factors of sales and distribution management such as distribution channel, purchase automation, customer service, merchandising automation, and shopping experiences. This is a qualitative research paper that aims to examine the impact of AI on sales and distribution management of 30 multinational brands in six different industries, namely: airline; automobile; banking and insurance; education; information technology; retail and telecom. Primary data is collected by means of interviews and questionnaires from a sample of 100 marketing managers that have been selected using convenient sampling method. The data is then analyzed using descriptive statistics, correlation analysis and multiple regression analysis. The study reveals that AI applications are extensively used in sales and distribution management, with a strong impact on various factors such as identifying new distribution channels, automation in merchandising, customer service, and purchase automation as well as sales processes. International brands have already integrated AI extensively in their day-to-day operations for better efficiency and improved market share while others are investing heavily in new AI applications for gaining competitive advantage.Keywords: artificial intelligence, sales and distribution, marketing mix, distribution channel, customer service
Procedia PDF Downloads 153159 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 165158 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 127157 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 96156 Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)
Authors: Christiana Ene Ogwuche, Joseph Amupitan, George Ndukwe, Rachael Ayo
Abstract:
Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug.Keywords: Maesobotrya barteri, medicinal plant, bioactivity, petroleum spirit extract, butellinic acid, oleanilic acid
Procedia PDF Downloads 199155 Literature Review of Empirical Studies on the Psychological Processes of End-of-Life Cancer Patients
Authors: Kimiyo Shimomai, Mihoko Harada
Abstract:
This study is a literature review of the psychological reactions that occur in end-of-life cancer patients who are nearing death. It searched electronic databases and selected literature related to psychological studies of end-of-life patients. There was no limit on the search period, and the search was conducted until the second week of December 2021. The keywords were specified as “death and dying”, “terminal illness”, “end-of-life”, “palliative care”, “psycho-oncology” and “research”. These literatures referred to Holly (2017): Comprehensive Systematic Review for Advanced Practice Nursing, P268 Figure 10.3 to ensure quality. These literatures were selected with a dissertation score of 4 or 5. The review was conducted in two stages with reference to the procedure of George (2002). First, these references were searched for keywords in the database, and then relevant references were selected from the psychology and nursing studies of end-of-life patients. The number of literatures analyzed was 76 for overseas and 17 for domestic. As for the independent variables, "physical variable" was the most common in 36 literatures (66.7%), followed by "psychological variable" in 35 literatures (64.8%), "spiritual variable" in 21 literatures (38%), and "social variable" in 17 literatures. (31.5%), "Variables related to medical care / treatment" were 16 literatures (29.6%). To summarize the relationship between these independent variables and the dependent variable, when the dependent variable is "psychological variable", the independent variables are "psychological variable", "social variable", and "physical variable". Among the independent variables, the physical variables were the most common. The psychological responses that occur in end-stage cancer patients who are nearing death are mutually influenced by psychological, social, and physical variables. Therefore, it supported the "total pain" advocated by Cicely Saunders.Keywords: cancer patient, end-of-life, literature review, psychological process
Procedia PDF Downloads 126154 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds
Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott
Abstract:
Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 369153 Entrepreneurship Education as an Enhancement of Skills for Graduate Employability: The Case of the University of Buea
Authors: Akumeyam Elvis Akum, Njanjo Thecla Anyongo Mukete, Fonkeng George Epah
Abstract:
Globally, the goal of higher education is to enhance graduate employability skills. Paradoxically, Cameroon’s graduate employability rate is far below the graduation rate. This worrisome situation caused the researcher to hypothesize that the teaching and learning experiences account for this increasing disparity. The study sought to investigate the effect on graduate employability of the teaching of organizational, problem-solving, innovation, and risk management skills on graduate employability. The study adopted a descriptive survey design with a quantitative approach. Data was collected by quantitative techniques from a random sample of 385 graduates using closed-ended structured questionnaire. Generally, findings revealed that entrepreneurship education does not sufficiently enhance graduate employability in the University of Buea. Specifically, the teaching of organizational skills does not significantly enhance their employability, as an average of 55% of graduates indicated that the course did not sufficiently help them develop skills for planning, management of limited resources, collaboration, and the setting of priorities. Also, 60% of the respondents indicated that the teaching of problem-solving skills does not significantly enhance graduate employability at the University of Buea. Contrarily, 57% of the respondents agreed that through their experiences in entrepreneurship education, their innovation skills were improved. The study recommended that a practical approach to teaching should be adopted, with attention to societal needs. A framework to ensure the teaching of entrepreneurship to students at the undergraduate level is recommended, such that those who do not continue with university studies after their Bachelor’s degree would have acquired the needed skills for employability.Keywords: employability, entrepreneurship education, graduate, innovative skills, organizational skills, problem-solving skills, risk management skills
Procedia PDF Downloads 77152 Indian Christian View of God: Exploring Its Trajectory in 20th Century
Authors: James Ponniah
Abstract:
Christianity is the largest religious tradition of the world. What makes Christianity a world religion is its characteristics of universality and particularity. Its universality and particularity are closely interrelated. Its university is realized and embodied in its particularities and its particularity is recognized and legitimized through its universality. This paper focuses on the dimension of the particularity of Christianity in that it looks at the particularized ideas and discourses of Christian thinking in India in the 20th century and pays attention to the differing shifts and new shades of meaning in Indian Christian notion of God. Drawing upon the writings of select Indian theologians such as Brahmabandhab Upadhyaya, Sundar Sing, A.J Appasamy, Raymond Panikkar, Amalorpavadass and George Soares Prabhhu, this paper delves into how the contexts—be it personal, political, historical or ecclesial—bear upon the way Indian theologians have conceived and constructed the notion of God in their work. Focusing upon how they responded to the signs of their time through their theological narratives, the paper argues that the religion of Christianity can sustain its universality only when it translates its key notions such as God into indigenous categories and local idioms and thus makes itself relevant to the people among whom it is spread. Monotheistic God of Christianity has to accommodate plurality of expressions if Christian idea God has to capture and convey everyone’s experience of God. The case of Indian Christianity then reveals that a monolithic world religion will be experienced and recognised as truly universal only when it sheds its homogeneity and assumes a heterogeneous portrait through the acquisition of local idioms. Allowing culturally diverse idioms to influence theological categories is not inconsequential to—‘accommodating differences and accepting diversities,’ an issue we encounter within and beyond religious domains in our contemporary times.Keywords: concept of God, heterogeneity, Indian Christianity, indigenous categories
Procedia PDF Downloads 245151 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi
Abstract:
Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS
Procedia PDF Downloads 63150 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chaos, lambda diode, strange attractor, nonlinear system
Procedia PDF Downloads 85149 Assets and Health: Examining the Asset-Building Theoretical Framework and Psychological Distress
Authors: Einav Srulovici, Michal Grinstein-Weiss, George Knafl, Linda Beeber, Shawn Kneipp, Barbara Mark
Abstract:
Background: The asset-building theoretical framework (ABTF) is acknowledged as the most complete framework thus far for depicting the relationships between asset accumulation (the stock of a household’s saved resources available for future investment) and health outcomes. Although the ABTF takes into consideration the reciprocal relationship between asset accumulation and health, no ABTF based study has yet examined this relationship. Therefore, the purpose of this study was to test the ABTF and psychological distress, focusing on the reciprocal relationship between assets accumulation and psychological distress. Methods: The study employed longitudinal data from 6,295 families from the 2001 and 2007 Panel Study of Income Dynamics data sets. Structural equation modeling (SEM) was used to test the reciprocal relationship between asset accumulation and psychological distress. Results: In general, the data displayed a good fit to the model. The longitudinal SEM found that asset accumulation significantly increased with a decreased in psychological distress over time, while psychological distress significantly increased with an increase in asset accumulation over time, confirming the existence of the hypothesized reciprocal relationship. Conclusions: Individuals who are less psychological distressed might have more energy to engage in activities, such as furthering their education or obtaining better jobs that are in turn associated with greater asset accumulation, while those who have greater assets may invest those assets in riskier investments, resulting in increased psychological distress. The confirmation of this reciprocal relationship highlights the importance of conducting longitudinal studies and testing the reciprocal relationship between asset accumulation and other health outcomes.Keywords: asset-building theoretical framework, psychological distress, structural equation modeling, reciprocal relationship
Procedia PDF Downloads 392148 Iris Recognition Based on the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric
Procedia PDF Downloads 333147 Influence of Perceived Organizational Support and Emotional Intelligence on Organizational Cynicism among Millennials
Authors: Paridhi Agarwal, Kusum M. George
Abstract:
A cynic is someone upset about the future prematurely. In today’s highly competitive workplace, cynicism has become a prominent concern. It is a controversial issue that brings about psychological disengagement and antagonism towards the management. In organizational sciences, scientific investigation of this negative work behavior is lacking, and so there is no universal definition so far. But most commonly, Organizational Cynicism (OC) has been characterized as an unfavorable attitude towards the organization, encompassing a belief that the organization has low integrity, negative affect, and depreciative behavioral tendencies. Given its prevalence, this study aims to contribute to the existing body of knowledge on OC. This research examines the predictability of OC from two factors- Perceived Organizational Support (POS) and Emotional Intelligence (EI) among millennials in India as well as identify contradictions in today’s scenario. Standardized Organizational Cynicism Scale comprising of three components, Perceived Organizational Support Questionnaire and Goleman’s Emotional Intelligence Test are used on a convenient sample of 104 corporate sector employees in the age range 22-35 years. Correlation test elucidated the relationships, and regression analysis revealed the level of influence of the above variables on OC. Surprisingly, Emotional-Social Awareness had stronger relationships with all dimensions of OC in males as compared to females. It was also seen that EI and POS, together with predicted OC, but separately, only POS accounted for variability in OC, and this impact was much stronger for males, implying that there are other important factors that make females cynical at work. Thus, the over-emphasis on EI training for the millennial generation has also been challenged in this study. It can be said that there are avertible preconditions to the negative attitude- OC. This research has important managerial implications in areas of recruitment, training, and organizational environment.Keywords: emotional intelligence, millennials, organizational cynicism, perceived organizational support.
Procedia PDF Downloads 124146 Socio-Economic Influences on Soilless Agriculture
Authors: George Vernon Byrd, Bhim Bahadur Ghaley, Eri Hayashi
Abstract:
In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agriculture land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.Keywords: aquaponics, hydroponics, soilless agriculture, urban agriculture
Procedia PDF Downloads 95145 Trade Liberalization and Domestic Private Investment in Nigeria
Authors: George-Anokwuru Chioma Chidinma Bernadette
Abstract:
This paper investigated the effect of trade liberalization on domestic private investment in Nigeria from 1981 to 2020. To achieve this objective, secondary data on domestic private investment, trade openness, exchange rate and interest rate were sourced from the statistical bulletin of Nigeria’s apex bank. The Autoregressive Distributed Lag (ARDL) technique was used as the main analytical tool. The ARDL Bounds test revealed the existence of long run association among the variables. The results revealed that trade openness and exchange rate have positive and insignificant relationship with domestic private investment both in the long and short runs. At the same time, interest rate has negative relationship with domestic private investment both in the long and short runs. Therefore, it was concluded that there is no significant relationship between trade openness, exchange rate, interest rate and domestic private investment in Nigeria during the period of study. Based on the findings, the study recommended that government should formulate trade policies that will encourage the growth of domestic private investment in Nigeria. To achieve this, government should ensure consistency in trade policies and at the same time strengthen the existing policies to build investors’ confidence. Also, government should make available an investment-friendly environment, as well as monitor real sector operators to ensure that foreign exchange allocations are not diverted. Government should increase capital investment in education, housing, transportation, agriculture, health, power, road construction, national defense, among others that will help the various sectors of the economy to function very well thereby making the business environment friendly thereby enhancing the growth and development of the country.Keywords: trade openness, domestic private investment, ARDL, exchange rate
Procedia PDF Downloads 68144 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells
Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia
Abstract:
We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis
Procedia PDF Downloads 275143 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure
Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou
Abstract:
A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure
Procedia PDF Downloads 338142 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components
Authors: Andras Dezső, Peter Baumli, George Kaptay
Abstract:
The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.Keywords: phosphorous, steel, segregation, thermo-calc software
Procedia PDF Downloads 623141 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction
Procedia PDF Downloads 96140 Protective Effect of Diosgenin against Silica-Induced Tuberculosis in Rat Model
Authors: Williams A. Adu, Cynthia A. Danquah, Paul P. S. Ossei, Selase Ativui, Michael Ofori, James Asenso, George Owusu
Abstract:
Background Silicosis is an occupational disease of the lung that is caused by chronic exposure to silica dust. There is a higher frequency of co-existence of silicosis with tuberculosis (TB), ultimately resulting in lung fibrosis and respiratory failure. Chronic intake of synthetic drugs has resulted in undesirable side effects. Diosgenin is a steroidal saponin that has been shown to exert a therapeutic effect on lung injury. Therefore, we investigated the ability of diosgenin to reduce the susceptibility of silica-induced TB in rats. Method Silicosis was induced by intratracheal instillation of 50 mg/kg crystalline silica in Sprague Dawley rats. Different doses of diosgenin (1, 10, and 100 mg/kg), Mycobacterium smegmatis and saline were administered for 30 days. Afterwards, 5 of the rats from each group were sacrificed, and the 5 remaining rats in each group, except the control, received Mycobacterium smegmatis. Treatment of diosgenin continued until the 50th day, and the rats were sacrificed at the end of the experiment. The result was analysed using a one-way analysis of variance (ANOVA) with a Graph-pad prism Result At a half-maximal inhibition concentration of 48.27 µM, diosgenin inhibited the growth of Mycobacterium smegmatis. There was a marked decline in the levels of immune cell infiltration and cytokines production. Lactate dehydrogenase and total protein levels were significantly reduced compared to control. There was an increase in the survival rate of the treatment group compared to the control. Conclusion Diosgenin ameliorated silica-induced pulmonary tuberculosis by declining the levels of inflammatory and pro-inflammatory cytokines and, in effect, significantly reduced the susceptibility of rats to pulmonary TB.Keywords: silicosis, tuberculosis, diosgenin, fibrosis, crystalline silica
Procedia PDF Downloads 64139 Biomechanics of Ceramic on Ceramic vs. Ceramic on Xlpe Total Hip Arthroplasties During Gait
Authors: Athanasios Triantafyllou, Georgios Papagiannis, Vassilios Nikolaou, Panayiotis J. Papagelopoulos, George C. Babis
Abstract:
In vitro measurements are widely used in order to predict THAs wear rate implementing gait kinematic and kinetic parameters. Clinical tests of materials and designs are crucial to prove the accuracy and validate such measurements. The purpose of this study is to examine the affection of THA gait kinematics and kinetics on wear during gait, the essential functional activity of humans, by comparing in vivo gait data to in vitro results. Our study hypothesis is that both implants will present the same hip joint kinematics and kinetics during gait. 127 unilateral primary cementless total hip arthroplasties were included in the research. Independent t-tests were used to identify a statistically significant difference in kinetic and kinematic data extracted from 3D gait analysis. No statistically significant differences observed at mean peak abduction, flexion and extension moments between the two groups (P.abduction= 0,125, P.flexion= 0,218, P.extension= 0,082). The kinematic measurements show no statistically significant differences too (Prom flexion-extension= 0,687, Prom abduction-adduction= 0,679). THA kinematics and kinetics during gait are important biomechanical parameters directly associated with implants wear. In vitro studies report less wear in CoC than CoXLPE when tested with the same gait cycle kinematic protocol. Our findings confirm that both implants behave identically in terms of kinematics in the clinical environment, thus strengthening in vitro results of CoC advantage. Correlated to all other significant factors that affect THA wear could address in a complete prism the wear on CoC and CoXLPE.Keywords: total hip arthroplasty biomechanics, THA gait analysis, ceramic on ceramic kinematics, ceramic on XLPE kinetics, total hip replacement wear
Procedia PDF Downloads 150138 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector
Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts
Abstract:
At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion
Procedia PDF Downloads 184137 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models
Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru
Abstract:
Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.Keywords: maize, stem borers, density, RapidEye, GLM
Procedia PDF Downloads 495