Search results for: B-spline finite element
3666 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings
Authors: Ahmed A. Mohamed Aly
Abstract:
Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth
Procedia PDF Downloads 1393665 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation
Authors: Pratch Kittipongpattana, Thongchai Fongsamootr
Abstract:
This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.Keywords: boiler water wall tube, finite element, stress analysis, strain gage rosette
Procedia PDF Downloads 3903664 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain
Authors: M. Rashid Hussain, Shady S. Refaat
Abstract:
The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation
Procedia PDF Downloads 1583663 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers
Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch
Abstract:
Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance.Keywords: finite element method, Preissmann scheme, HEC-RAS, flood forecasting, Indus river
Procedia PDF Downloads 5053662 Improvement of the Geometric of Dental Bridge Framework through Automatic Program
Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen
Abstract:
The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.Keywords: dental bridge, finite element analysis, framework, automatic program
Procedia PDF Downloads 2833661 The Use of Random Set Method in Reliability Analysis of Deep Excavations
Authors: Arefeh Arabaninezhad, Ali Fakher
Abstract:
Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty
Procedia PDF Downloads 2683660 Finite Element Assessment on Bond Behaviour of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency and stiffness on the fatigue life of the FRP-to-concrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model
Procedia PDF Downloads 4513659 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks
Authors: Dibu Dave Mbako, Bin Cheng
Abstract:
This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution
Procedia PDF Downloads 2243658 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model
Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar
Abstract:
In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model
Procedia PDF Downloads 3853657 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling
Authors: A. Pesin, D. Pustovoytov, M. Sverdlik
Abstract:
During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.Keywords: roughing hot rolling, FEM, crack, bulging
Procedia PDF Downloads 3793656 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.Keywords: crack-tip deformations, static loading, stress concentration, stress intensity factor
Procedia PDF Downloads 1443655 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram
Procedia PDF Downloads 1363654 Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor
Authors: M. Naeimi, H. Aghazadeh, E. Afjei, A. Siadatan
Abstract:
In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity.Keywords: synchronous reluctance motor (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM), finite element method, static eccentricity, fault analysis
Procedia PDF Downloads 3133653 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame
Authors: Keyvan Ramin
Abstract:
The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve
Procedia PDF Downloads 3783652 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90˚/0˚] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of sub-elements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.Keywords: dynamic finite element, localized interface degeneration, proportional damping, state-space modeling
Procedia PDF Downloads 2983651 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios
Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook
Abstract:
There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis
Procedia PDF Downloads 6393650 Effects of Aerodynamic on Suspended Cables Using Non-Linear Finite Element Approach
Authors: Justin Nwabanne, Sam Omenyi, Jeremiah Chukwuneke
Abstract:
This work presents structural nonlinear static analysis of a horizontal taut cable using Finite Element Analysis (FEA) method. The FEA was performed analytically to determine the tensions at each nodal point and subsequently, performed based on finite element displacement method computationally using the FEA software, ANSYS 14.0 to determine their behaviour under the influence of aerodynamic forces imposed on the cable. The convergence procedure is adapted into the method to prevent excessive displacements through the computations. The work compared the two FEA cases by examining the effectiveness of the analytical model in describing the response with few degrees of freedom and the ability of the nonlinear finite element procedure adopted to capture the complex features of cable dynamics with reference to the aerodynamic external influence. Results obtained from this work explain that the analytic FEM results without aerodynamic influence show a parabolic response with an optimum deflection at nodal points 12 and 13 with the cable weight at nodes 12 and 13 having the value -1.002936N while for the cable tension shows an optimum deflection value for nodes 12 and 13 at -189396.97kg/km. The maximum displacement for the cable system was obtained from ANSYS 14.0 as 4483.83 mm for X, Y and Z components of displacements at node number 2 while the maximum displacement obtained is 4218.75mm for all the directional components. The dynamic behaviour of a taut cable investigated has application in a typical power transmission line. Aerodynamic influences on the cables were considered using FEA approach by employing ANSYS 14.0 showed a complex modal behaviour as expected.Keywords: aerodynamics, cable tension and weight, finite element analysis, nodal, non-linear model, optimum deflection, suspended cable, transmission line
Procedia PDF Downloads 2793649 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads
Authors: S. Kamil Akin, Turgut Acikara
Abstract:
In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation
Procedia PDF Downloads 4393648 Nonlinear Analysis of Torsionally Loaded Steel Fibred Self-Compacted Concrete Beams Reinforced by GFRP Bars
Authors: Khaled Saad Eldin Mohamed Ragab
Abstract:
This paper investigates analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Nonlinear finite element analysis on 12 beams specimens was achieved by using ANSYS software. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete beams in the post elastic range or the ultimate strength of a reinforced concrete beams produced from steel fiber reinforced self compacting concrete (SFRSCC) and reinforced by GFRP bars. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed. Then, a parametric study of the effect ratio of volume fraction of steel fibers in ordinary strength concrete, the effect ratio of volume fraction of steel fibers in high strength concrete, and the type of reinforcement of stirrups were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions thyat may be useful for designers have been raised and represented.Keywords: nonlinear analysis, torsionally loaded, self compacting concrete, steel fiber reinforced self compacting concrete (SFRSCC), GFRP bars and sheets
Procedia PDF Downloads 4533647 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method
Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad
Abstract:
The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.Keywords: finite element method, flux density, transformer, voltage gradient
Procedia PDF Downloads 2923646 An Axisymmetric Finite Element Method for Compressible Swirling Flow
Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz
Abstract:
This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.Keywords: axisymmetric problem, compressible Navier-Stokes equations, continuous finite elements, swirling flow
Procedia PDF Downloads 1763645 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, Rüdiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: damping coefficients, finite element analysis, super-element, state-space model
Procedia PDF Downloads 3213644 Response of Concrete Panels Subjected to Compression-Tension State of Stresses
Authors: Mohammed F. Almograbi
Abstract:
For reinforced concrete panels the risk of failure due to compression -tension state of stresses, results from pure shear or torsion, can be a major problem. The present calculation methods for such stresses from multiple influences are without taking into account the softening of cracked concrete remains conservative. The non-linear finite element method has become an important and increasingly used tool for the analysis and assessment of the structures by including cracking softening and tension-stiffening. The aim of this paper is to test a computer program refined recently and to simulate the compression response of cracked concrete element and to compare with the available experimental results.Keywords: reinforced concrete panels, compression-tension, shear, torsion, compression softening, tension stiffening, non-linear finite element analysis
Procedia PDF Downloads 3383643 Determination of Stresses in Vlasov Beam Sections
Authors: Semih Erdogan
Abstract:
In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties
Procedia PDF Downloads 643642 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid
Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis
Abstract:
This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener
Procedia PDF Downloads 793641 Stress Analysis of Vertebra Using Photoelastic and Finite Element Methods
Authors: Jamal A. Hassan, Ali Q. Abdulrazzaq, Sadiq J. Abass
Abstract:
In this study, both the photoelastic, as well as the finite element methods, are used to study the stress distribution within human vertebra (L4) under forces similar to those that occur during normal life. Two & three dimensional models of vertebra were created by the software AutoCAD. The coordinates obtained were fed into a computer numerical control (CNC) tensile machine to fabricate the models from photoelastic sheets. Completed models were placed in a transmission polariscope and loaded with static force (up to 1500N). Stresses can be quantified and localized by counting the number of fringes. In both methods the Principle stresses were calculated at different regions. The results noticed that the maximum von-mises stress on the area of the extreme superior vertebral body surface and the facet surface with high normal stress (σ) and shear stress (τ). The facets and other posterior elements have a load-bearing function to help support the weight of the upper body and anything that it carries, and are also acted upon by spinal muscle forces. The numerical FE results have been compared with the experimental method using photoelasticity which shows good agreement between experimental and simulation results.Keywords: photoelasticity, stress, load, finite element
Procedia PDF Downloads 2863640 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM
Procedia PDF Downloads 1133639 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement
Authors: G. A. Rombach, A. Faron
Abstract:
Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics
Procedia PDF Downloads 1193638 Elastic and Plastic Collision Comparison Using Finite Element Method
Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier
Abstract:
The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.Keywords: collision, impact models, finite element method, Hertz Theory
Procedia PDF Downloads 1753637 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems
Authors: Yasar Pala, Safa Senaysoy, Emre Calis
Abstract:
In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization
Procedia PDF Downloads 260