Search results for: Aiping Zheng
22 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications
Authors: Xianwei Zheng, Yuan Yan Tang
Abstract:
Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis
Procedia PDF Downloads 34121 Integrating Reactive Chlorine Species Generation with H2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment
Authors: Zexiao Zheng, Irene M. C. Lo
Abstract:
Organic pollutants, ammonia, and bacteria are major contaminants in sewage, which may adversely impact ecosystems without proper treatment. Conventional wastewater treatment plants (WWTPs) are operated to remove these contaminants from sewage but suffer from high carbon emissions and are powerless to remove emerging organic pollutants (EOPs). Herein, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic compounds, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) with improved PEC properties due to the construction of oxygen vacancies and V4+ species was developed for the multifunctional PEC system. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs’ discharge standard in 40 minutes at 2.0 V vs. Ag/AgCl and completely degrade carbamazepine (one of the EOPs), coupled with significant evolution of H2. A remarkable reduction in operational carbon emissions was achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained direct carbon emissions from the generation of greenhouse gases. Mechanistic investigation revealed that the PEC system could activate chloride ions in sewage to generate reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at different pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. The study combined the simultaneous removal of three major contaminants from saline sewage and H2 evolution in a single PEC process, demonstrating a viable approach to supplementing and extending the existing wastewater treatment technologies. The study generated profound insights into the in-situ activation of existing chloride ions in sewage for contaminants removal and offered fundamental theories for applying the PEC system in sewage remediation with low operational carbon emissions. The developed PEC system can fit well with the future needs of wastewater treatment because of the following features: (i) low operational carbon emissions, benefiting the carbon neutrality process; (ii) higher quality of the effluent due to the elimination of EOPs; (iii) chemical-free in the operation of sewage treatment; (iv) easy reuse and recycling without secondary pollution.Keywords: contaminants removal, H2 evolution, multifunctional PEC system, operational carbon emissions, saline sewage treatment, r-BiVO4 photoanodes
Procedia PDF Downloads 15720 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 5119 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis
Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren
Abstract:
Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1
Procedia PDF Downloads 23718 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment
Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho
Abstract:
As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids
Procedia PDF Downloads 33917 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 57116 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass
Authors: Xiang Zheng, Zhaoping Zhong
Abstract:
In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.Keywords: biomass conversion, biofuel, process optimization, life cycle assessment
Procedia PDF Downloads 7015 Neuronal Mechanisms of Observational Motor Learning in Mice
Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho
Abstract:
Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive
Procedia PDF Downloads 8814 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation
Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu
Abstract:
Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing
Procedia PDF Downloads 16113 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence
Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej
Abstract:
In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction
Procedia PDF Downloads 10412 Preschoolers’ Selective Trust in Moral Promises
Authors: Yuanxia Zheng, Min Zhong, Cong Xin, Guoxiong Liu, Liqi Zhu
Abstract:
Trust is a critical foundation of social interaction and development, playing a significant role in the physical and mental well-being of children, as well as their social participation. Previous research has demonstrated that young children do not blindly trust others but make selective trust judgments based on available information. The characteristics of speakers can influence children’s trust judgments. According to Mayer et al.’s model of trust, these characteristics of speakers, including ability, benevolence, and integrity, can influence children’s trust judgments. While previous research has focused primarily on the effects of ability and benevolence, there has been relatively little attention paid to integrity, which refers to individuals’ adherence to promises, fairness, and justice. This study focuses specifically on how keeping/breaking promises affects young children’s trust judgments. The paradigm of selective trust was employed in two experiments. A sample size of 100 children was required for an effect size of w = 0.30,α = 0.05,1-β = 0.85, using G*Power 3.1. This study employed a 2×2 within-subjects design to investigate the effects of moral valence of promises (within-subjects factor: moral vs. immoral promises), and fulfilment of promises (within-subjects factor: kept vs. broken promises) on children’s trust judgments (divided into declarative and promising contexts). In Experiment 1 adapted binary choice paradigms, presenting 118 preschoolers (62 girls, Mean age = 4.99 years, SD = 0.78) with four conflict scenarios involving the keeping or breaking moral/immoral promises, in order to investigate children’s trust judgments. Experiment 2 utilized single choice paradigms, in which 112 preschoolers (57 girls, Mean age = 4.94 years, SD = 0.80) were presented four stories to examine their level of trust. The results of Experiment 1 showed that preschoolers selectively trusted both promisors who kept moral promises and those who broke immoral promises, as well as their assertions and new promises. Additionally, the 5.5-6.5-year-old children are more likely to trust both promisors who keep moral promises and those who break immoral promises more than the 3.5- 4.5-year-old children. Moreover, preschoolers are more likely to make accurate trust judgments towards promisor who kept moral promise compared to those who broke immoral promises. The results of Experiment 2 showed significant differences of preschoolers’ trust degree: kept moral promise > broke immoral promise > broke moral promise ≈ kept immoral promise. This study is the first to investigate the development of trust judgement in moral promise among preschoolers aged 3.5-6.5. The results show that preschoolers can consider both valence and fulfilment of promises when making trust judgments. Furthermore, as preschoolers mature, they become more inclined to trust promisors who keep moral promises and those who break immoral promises. Additionally, the study reveals that preschoolers have the highest level of trust in promisors who kept moral promises, followed by those who broke immoral promises. Promisors who broke moral promises and those who kept immoral promises are trusted the least. These findings contribute valuable insights to our understanding of moral promises and trust judgment.Keywords: promise, trust, moral judgement, preschoolers
Procedia PDF Downloads 5411 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 16110 The Role of China’s Rural Policies on the Changing the Rural Area in China: Changfu Village(China) Case
Authors: Zheng Lulin, Xiong Guoping
Abstract:
In recent years, agriculture, rural development, and peasants are among the top concerns and priorities of the Chinese Government. Several related issues have been paid many attentions by academic communities, including the impacts of corresponding policies on the rural villages, the mechanisms of these impacts, and the future development of rural society. However, most of the researchers focus on single rural policy instead of integral rural policy system. Hence, this dissertation focused on the mechanisms of policies’ influence on rural changes through a case study from Changfu Village in central Guangxi Province, China, to propose the optimized suggestions for rural development. Forty-three relevant pivotal policies of significant influence on rural development are summarized from literature and documents, covering five aspects of agricultural production, rural living security, open rural markets, rural household registration systems, and farmland transferring. Besides, having been live in this area for more than 20 years, researchers obtain the basic information about changing the social connection between citizens and villagers, the habitat of villagers by years of informal interviews. Furthermore, more than 200 questionnaires are given to villagers to analyze the changing of their personal and family information. The summary of rural policies revealed that the development trend of public rural policies followed the U-shape curve and these policies are characterized by economic intentions and operative economy. Report of questionnaires and interviews show that the development of rural economy was promoted greatly by public policies. Firstly, Social communication and rural culture were affected to a certain extent. Secondly, the educational level of rural individuals was significantly enhanced, whereas the quality of population had limited progress. Finally, the freedom of occupational choice for rural individuals into cities was greater than before, but still restricted by the class solidification of social background, resulting in more obstacles for rural individuals to settle down in cities. From what we discuss about, we may reach the conclusion on several perspectives: Firstly, the impact of the rural policies has a significant role in promoting the economy development of the rural area. However, separations between rural and urban area are still a major problem since rural policy contributed little to improve the rural population quality. Therefore, in the future, providing high quality educational facilities including teachers, libraries, and opportunities of broadening their knowledge base are key issues of future rural policy. Secondly, the development of rural economy would be a lack of driving force for further improvement owning to the fact that working hard couldn’t get more improvement. In the future, public policies should support the rural development of culture, technology, and personal qualities to create favorable social environment for the free increase of rural population.Keywords: changing of rural area, rural development of China, rural policy, social environment
Procedia PDF Downloads 4299 Research on Internet Attention of Tourism and Marketing Strategy in Northeast Sichuan Economic Zone in China Based on Baidu Index
Authors: Chuanqiao Zheng, Wei Zeng, Haozhen Lin
Abstract:
As of March 2020, the number of Chinese netizens has reached 904 million. The proportion of Internet users accessing the Internet through mobile phones is as high as 99.3%. Under the background of 'Internet +', tourists have a stronger sense of independence in the choice of tourism destinations and tourism products. Tourists are more inclined to learn about the relevant information on tourism destinations and other tourists' evaluations of tourist products through the Internet. The search engine, as an integrated platform that contains a wealth of information, is highly valuable to the analysis of the characteristics of the Internet attention given to various tourism destinations, through big data mining and analysis. This article uses the Baidu Index as the data source, which is one of the products of Baidu Search. The Baidu Index is based on big data, which collects and shares the search results of a large number of Internet users on the Baidu search engine. The big data used in this article includes search index, demand map, population profile, etc. The main research methods used are: (1) based on the search index, analyzing the Internet attention given to the tourism in five cities in Northeast Sichuan at different times, so as to obtain the overall trend and individual characteristics of tourism development in the region; (2) based on the demand map and the population profile, analyzing the demographic characteristics and market positioning of the tourist groups in these cities to understand the characteristics and needs of the target groups; (3) correlating the Internet attention data with the permanent population of each province in China in the corresponding to construct the Boston matrix of the Internet attention rate of the Northeast Sichuan tourism, obtain the tourism target markets, and then propose development strategies for different markets. The study has found that: a) the Internet attention given to the tourism in the region can be categorized into tourist off-season and peak season; the Internet attention given to tourism in different cities is quite different. b) tourists look for information including tour guide information, ticket information, traffic information, weather information, and information on the competing tourism cities; with regard to the population profile, the main group of potential tourists searching for the keywords of tourism in the five prefecture-level cities in Northeast Sichuan are youth. The male to female ratio is about 6 to 4, with males being predominant. c) through the construction of the Boston matrix, it is concluded that the star market for tourism in the Northeast Sichuan Economic Zone includes Sichuan and Shaanxi; the cash cows market includes Hainan and Ningxia; the question market includes Jiangsu and Shanghai; the dog market includes Hubei and Jiangxi. The study concludes with the following planning strategies and recommendations: i) creating a diversified business format that integrates cultural and tourism; ii) creating a brand image of niche tourism; iii) focusing on the development of tourism products; iv) innovating composite three-dimensional marketing channels.Keywords: Baidu Index, big data, internet attention, tourism
Procedia PDF Downloads 1238 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling
Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li
Abstract:
Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM
Procedia PDF Downloads 2007 Artificial Cells Capable of Communication by Using Polymer Hydrogel
Authors: Qi Liu, Jiqin Yao, Xiaohu Zhou, Bo Zheng
Abstract:
The first artificial cell was produced by Thomas Chang in the 1950s when he was trying to make a mimic of red blood cells. Since then, many different types of artificial cells have been constructed from one of the two approaches: a so-called bottom-up approach, which aims to create a cell from scratch, and a top-down approach, in which genes are sequentially knocked out from organisms until only the minimal genome required for sustaining life remains. In this project, bottom-up approach was used to build a new cell-free expression system which mimics artificial cell that capable of protein expression and communicate with each other. The artificial cells constructed from the bottom-up approach are usually lipid vesicles, polymersomes, hydrogels or aqueous droplets containing the nucleic acids and transcription-translation machinery. However, lipid vesicles based artificial cells capable of communication present several issues in the cell communication research: (1) The lipid vesicles normally lose the important functions such as protein expression within a few hours. (2) The lipid membrane allows the permeation of only small molecules and limits the types of molecules that can be sensed and released to the surrounding environment for chemical communication; (3) The lipid vesicles are prone to rupture due to the imbalance of the osmotic pressure. To address these issues, the hydrogel-based artificial cells were constructed in this work. To construct the artificial cell, polyacrylamide hydrogel was functionalized with Acrylate PEG Succinimidyl Carboxymethyl Ester (ACLT-PEG2000-SCM) moiety on the polymer backbone. The proteinaceous factors can then be immobilized on the polymer backbone by the reaction between primary amines of proteins and N-hydroxysuccinimide esters (NHS esters) of ACLT-PEG2000-SCM, the plasmid template and ribosome were encapsulated inside the hydrogel particles. Because the artificial cell could continuously express protein with the supply of nutrients and energy, the artificial cell-artificial cell communication and artificial cell-natural cell communication could be achieved by combining the artificial cell vector with designed plasmids. The plasmids were designed referring to the quorum sensing (QS) system of bacteria, which largely relied on cognate acyl-homoserine lactone (AHL) / transcription pairs. In one communication pair, “sender” is the artificial cell or natural cell that can produce AHL signal molecule by synthesizing the corresponding signal synthase that catalyzed the conversion of S-adenosyl-L-methionine (SAM) into AHL, while the “receiver” is the artificial cell or natural cell that can sense the quorum sensing signaling molecule form “sender” and in turn express the gene of interest. In the experiment, GFP was first immobilized inside the hydrogel particle to prove that the functionalized hydrogel particles could be used for protein binding. After that, the successful communication between artificial cell-artificial cell and artificial cell-natural cell was demonstrated, the successful signal between artificial cell-artificial cell or artificial cell-natural cell could be observed by recording the fluorescence signal increase. The hydrogel-based artificial cell designed in this work can help to study the complex communication system in bacteria, it can also be further developed for therapeutic applications.Keywords: artificial cell, cell-free system, gene circuit, synthetic biology
Procedia PDF Downloads 1526 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin
Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng
Abstract:
The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin
Procedia PDF Downloads 765 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway
Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi
Abstract:
Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig
Procedia PDF Downloads 1294 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 833 Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years
Authors: Fahui Jiang, Xinwei Xue, Liyan Zhang, Yanyan Zuo, Hao Zhang, Wei Zheng, Limei Bian, Lingling Hu, Chunlei Hao, Jianghong Du, Yanhua Ci, Ruibao Cheng, Ciren Dawa, Mithun Biswas, Mahbub Ul Islam, Fansheng Meng, Xinhua Peng
Abstract:
Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions.Keywords: no tillage, conventional tillage, soil water, soil temperature, soil physics
Procedia PDF Downloads 62 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects
Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm
Abstract:
Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology
Procedia PDF Downloads 1801 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development
Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng
Abstract:
Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics
Procedia PDF Downloads 170