Search results for: smooth hysteretic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17205

Search results for: smooth hysteretic model

15495 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope

Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori

Abstract:

Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the ‎energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is ‎caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope ‎has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D ‎software. The numerical model is verified by experimental data of water depth in ‎stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air ‎entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence ‎models. The results showed a good agreement between numerical and experimental model‎ as ‎numerical model can be used to optimize of stilling basins.‎

Keywords: experimental and numerical modelling, end adverse slope, flow ‎parameters, USBR II stilling basin

Procedia PDF Downloads 179
15494 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 336
15493 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 349
15492 Fuzzy Nail Cream Formula Treatment with Basic Iranian Traditional Medicine

Authors: Elahe Najafizade, Ahmad Mohammad Alkhateeb, Seyed Ali Hossein Zahraei, Iman Dianat

Abstract:

Introduction: Hangnails are short, torn, down parts of the skin surrounding the nails. At times they are very painful. The usual treatment advised is cutting the excess skin with clippers or scissors. To provide instant relief to the patients, we describe a simpler and more effective way to use surgical glue to paste them back into their original position. Method: The cream should not be on the heat; it is on the bain-marie. To achieve the desired emulsifier, 1 gram of borax was mixed in 10 grams of distilled water in a bain-marie until it melted, then stirred oserin, beeswax, and oil in the bain-marie until it melted. After that, 32 grams of distilled water was added little by little. We add and stir and gradually add the borax dissolved in 10 grams of distilled water. The bowl of cream was placed in a bowl of cold water and stirred until the cream was smooth. After that, we add gasoline, alcohol, or methylparaben preservatives. It should be noted that this amount of ingredients is enough for a 350-gram can (when we prepare the cream, we also add the extract). Result: The patient was a 40-year-old female with a hangnail problem that had been used several different creams and Vaseline, but the treatment was not useful, but after this cream was applied for treatment; the hangnail started to cure within one week, and complete treatment achieved after two weeks. Conclusion: Traditional methods with modification without using chemical substances somehow work better and safer, so research programs on them will be useful for less risky treatment procedures.

Keywords: nail, cream, formula, traditional medicine

Procedia PDF Downloads 113
15491 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 130
15490 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan

Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem

Abstract:

Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.

Keywords: PV panel efficiency, PCM, numerical model, solar energy

Procedia PDF Downloads 173
15489 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 282
15488 Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model

Authors: Xiaoyun Li, Suoang Longzhou

Abstract:

This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020.

Keywords: redshift, cosmic expansion model, analytical solution, stellar distance

Procedia PDF Downloads 161
15487 Knowledge Audit Model for Requirement Elicitation Process

Authors: Laleh Taheri, Noraini C. Pa, Rusli Abdullah, Salfarina Abdullah

Abstract:

Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their Requirement Elicitation Process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial, and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.

Keywords: knowledge audit, requirement elicitation process, KA model, knowledge in requirement elicitation

Procedia PDF Downloads 345
15486 Preference for Housing Services and Rational House Price Bubbles

Authors: Stefanie Jeanette Huber

Abstract:

This paper explores the relevance and implications of preferences for housing services on house price fluctuations through the lens of an overlapping generation’s model. The model implies that an economy whose agents have lower preferences for housing services is characterized with lower expenditure shares on housing services and will tend to experience more frequent and more volatile housing bubbles. These model predictions are tested empirically in the companion paper Housing Booms and Busts - Convergences and Divergences across OECD countries. Between 1970 - 2013, countries who spend less on housing services as a share of total income experienced significantly more housing cycles and the associated housing boom-bust cycles were more violent. Finally, the model is used to study the impact of rental subsidies and help-to-buy schemes on rational housing bubbles. Rental subsidies are found to contribute to the control of housing bubbles, whereas help-to- buy scheme makes the economy more bubble-prone.

Keywords: housing bubbles, housing booms and busts, preference for housing services, expenditure shares for housing services, rental and purchase subsidies

Procedia PDF Downloads 299
15485 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 472
15484 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 443
15483 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model

Authors: Soudabeh Shemehsavar

Abstract:

In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.

Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process

Procedia PDF Downloads 317
15482 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 69
15481 The Role of Group Size, Public Employees’ Wages and Control Corruption Institutions in a Game-Theoretical Model of Public Corruption

Authors: Pablo J. Valverde, Jaime E. Fernandez

Abstract:

This paper shows under which conditions public corruption can emerge. The theoretical model includes variables such as the public employee wage (w), a control corruption parameter (c), and the group size of interactions (GS) between clusters of public officers and contractors. The system behavior is analyzed using phase diagrams based on combinations of such parameters (c, w, GS). Numerical simulations are implemented in order to contrast analytic results based on Nash equilibria of the theoretical model. Major findings include the functional relationship between wages and network topology, which attempts to reduce the emergence of corrupt behavior.

Keywords: public corruption, game theory, complex systems, Nash equilibrium.

Procedia PDF Downloads 242
15480 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 48
15479 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh

Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir

Abstract:

The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.

Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis

Procedia PDF Downloads 151
15478 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 112
15477 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 185
15476 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 438
15475 Uncertainty in Risk Modeling

Authors: Mueller Jann, Hoffmann Christian Hugo

Abstract:

Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.

Keywords: risk model, uncertainty monad, derivatives, contract algebra

Procedia PDF Downloads 576
15474 The Impact of Institutional and Organizational Change on Social Housing Organizations and Their Stakeholders

Authors: Farnoosh Faal

Abstract:

Institutional and organizational change in social housing organizations can have a significant impact on both the organizations themselves and their stakeholders. This paper provides an overview of the impact of institutional and organizational change on social housing organizations and their stakeholders, including tenants, employees, and other community members. The paper examines the different types of institutional and organizational change that can occur in social housing organizations, such as changes in management structure, funding models, and service delivery methods. It also explores the potential benefits and drawbacks of these changes, including changes in efficiency, service quality, and tenant satisfaction. The paper further discusses the impact of institutional and organizational change on social housing organization stakeholders, including the effects on employee morale, tenant engagement, and community relationships. The paper highlights the importance of effective stakeholder engagement and communication in ensuring a smooth transition to new organizational models and systems. Finally, the paper discusses the challenges and opportunities presented by institutional and organizational change in social housing organizations and provides recommendations for organizations looking to navigate these changes successfully. These recommendations include prioritizing stakeholder engagement, investing in staff training and development, and maintaining a focus on the needs and priorities of tenants and communities. Overall, this paper emphasizes the importance of considering the impact of institutional and organizational change on social housing organizations and their stakeholders and highlights strategies for managing these changes in a way that maximizes benefits and minimizes negative impacts.

Keywords: social housing organizations, stakeholder engagement, institutional change, challenges, opportunities

Procedia PDF Downloads 86
15473 Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling

Authors: JoonHo Lee, KyoJin An, JunSu Kim, Young-Chul Park

Abstract:

In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results.

Keywords: CFD, FEM, quick coupling, turbulence

Procedia PDF Downloads 384
15472 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 9
15471 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that it is not linked to planning software such as Microsoft Project, which lacks the database required for data storage. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, HR reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: primavera P6, SQL, Power BI, EVM, integration management

Procedia PDF Downloads 108
15470 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
15469 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems

Procedia PDF Downloads 96
15468 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 250
15467 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 420
15466 Islamic Finance: What is the Outlook for Italy?

Authors: Paolo Pietro Biancone

Abstract:

The spread of Islamic financial instruments is an opportunity to offer integration for the immigrant population and to attract, through the specific products, the richness of sovereign funds from the "Arab" countries. However, it is important to consider the possibility of comparing a traditional finance model, which in recent times has given rise to many doubts, with an "alternative" finance model, where the ethical aspect arising from religious principles is very important.

Keywords: banks, Europe, Islamic finance, Italy

Procedia PDF Downloads 270