Search results for: lipped channel beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2218

Search results for: lipped channel beam

538 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses

Authors: Walid Tawfik

Abstract:

The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.

Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband

Procedia PDF Downloads 222
537 Frame to Frameless: Stereotactic Operation Progress in Robot Time

Authors: Zengmin Tian, Bin Lv, Rui Hui, Yupeng Liu, Chuan Wang, Qing Liu, Hongyu Li, Yan Qi, Li Song

Abstract:

Objective Robot was used for replacement of the frame in recent years. The paper is to investigate the safety and effectiveness of frameless stereotactic surgery in the treatment of children with cerebral palsy. Methods Clinical data of 425 children with spastic cerebral palsy were retrospectively analyzed. The patients were treated with robot-assistant frameless stereotactic surgery of nuclear mass destruction. The motor function was evaluated by gross motor function measure-88 (GMFM-88) before the operation, 1 week and 3 months after the operation respectively. The statistical analysis was performed. Results The postoperative CT showed that the destruction area covered the predetermined target in all the patients. Minimal bleeding of puncture channel occurred in 2 patient, and mild fever in 3 cases. Otherwise, there was no severe surgical complication occurred. The GMFM-88 scores were 49.1±22.5 before the operation, 52.8±24.2 and 64.2±21.4 at the time of 1 week and 3 months after the operation, respectively. There was statistical difference between before and after the operation (P<0.01). After 3 months, the total effective rate was 98.1%, and the average improvement rate of motor function was 24.3% . Conclusion Replaced the traditional frame, the robot-assistant frameless stereotactic surgery is safe and reliable for children with spastic cerebral palsy, which has positive significance in improving patients’ motor function.

Keywords: cerebral palsy, robotics, stereotactic techniques, frameless operation

Procedia PDF Downloads 80
536 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield

Authors: Joyjit Dey, Souvik Sen

Abstract:

Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.

Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli

Procedia PDF Downloads 223
535 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control

Procedia PDF Downloads 278
534 Formation of Microcapsules in Microchannel through Droplet Merging

Authors: Md. Danish Eqbal, Venkat Gundabala

Abstract:

Microparticles and microcapsules are basically used as a carrier for cells, tissues, drugs, and chemicals. Due to its biocompatibility, non-toxicity and biodegradability, alginate based microparticles have numerous applications in drug delivery, tissue engineering, organ repair and transplantation, etc. The production of uniform monodispersed microparticles was a challenge for the past few decades. However, emergence of microfluidics has provided controlled methods for the generation of the uniform monodispersed microparticles. In this work, we present a successful method for the generation of both microparticles and microcapsules (single and double core) using merging approach of two droplets, completely inside the microfluidic device. We have fabricated hybrid glass- PDMS (polydimethylsiloxane) based microfluidic device which has coflow geometry as well as the T junction channel. Coflow is used to generate the single as well as double oil-alginate emulsion in oil and T junction helps to form the calcium chloride droplets in oil. The basic idea is to match the frequency of the alginate droplets and calcium chloride droplets perfectly for controlled generation. Using the merging of droplets technique, we have successfully generated the microparticles and the microcapsules having single core as well as double and multiple cores. The cores in the microcapsules are very stable, well separated from each other and very intact as seen through cross-sectional confocal images. The size and the number of the cores along with the thickness of the shell can be easily controlled by controlling the flowrate of the liquids.

Keywords: double-core, droplets, microcapsules, microparticles

Procedia PDF Downloads 247
533 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser

Procedia PDF Downloads 346
532 Overview of Multi-Chip Alternatives for 2.5 and 3D Integrated Circuit Packagings

Authors: Ching-Feng Chen, Ching-Chih Tsai

Abstract:

With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to the development of the high numerical aperture (high-NA) lithography equipment and other issues such as short channel effects. In the context of the ever-increasing technical requirements of portable devices and high-performance computing, relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (ICs) based on the updated transistor structure and technology nodes. The author concludes that multi-chip solutions for 2.5D and 3D IC packagings are feasible to prolong Moore’s Law.

Keywords: moore’s law, high numerical aperture, power consumption-performance-area-cost-cycle time to market, 2.5 and 3D- very-large-scale integration, packaging, through silicon via

Procedia PDF Downloads 112
531 Causes and Effects of the 2012 Flood Disaster on Affected Communities in Nigeria

Authors: Abdulquadri Ade Bilau, Richard Ajayi Jimoh, Adejoh Amodu Adaji

Abstract:

The increasing exposures to natural hazards have continued to severely impair on the built environment causing huge fatalities, mass damage and destruction of housing and civil infrastructure while leaving psychosocial impacts on affected communities. The 2012 flood disaster in Nigeria which affected over 7 million inhabitants in 30 of the 36 states resulted in 363 recorded fatalities with about 600,000 houses and a number of civil infrastructure damaged or destroyed. In Kogi State, over 500 thousand people were displaced in 9 out of the 21 local government affected while Ibaji and Lokoja local governments were worst hit. This study identifies the causes and 2012 flood disasters and its effect on housing and livelihood. Personal observation and questionnaire survey were instruments used in carrying out the study and data collected were analysed using descriptive statistical tool. Findings show that the 2012 flood disaster was aided by the gap in hydrological data, sudden dam failure, and inadequate drainage capacity to reduce flood risk. The study recommends that communities residing along the river banks in Lokoja and Ibaji LGAs must be adequately educated on their exposure to flood hazard and mitigation and risk reduction measures such as construction of adequate drainage channel are constructed in affected communities.

Keywords: flood, hazards, housing, risk reduction, vulnerability

Procedia PDF Downloads 254
530 First Principles Study of a New Half-Metallic Ferrimagnets Mn2–Based Full Heusler Compounds: Mn2ZrSi and Mn2ZrGe

Authors: Ahmed Abada, Kadda Amara, Said Hiadsi, Bouhalouane Amrani

Abstract:

Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000 µB per formula unit, well consistent with Slater-Pauling rule (Mtot = ( 24 – Ztot ) µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications.

Keywords: first-principles calculations, full Heusler structure, half-metallic ferrimagnets, elastic properties

Procedia PDF Downloads 360
529 An Experimental Study on the Positive Streamer Leader Propagation under Slow Front Impulse Voltages in a 10m Rod-Plane Air Gap

Authors: Wahab Ali Shah, Junjia He

Abstract:

In this work, we performed a large-scale investigation into leader development in a 10 m rod-plane gap under a long front positive impulse. To describe the leader propagation under slow front impulse voltages, we recorded the leader propagation with a high-speed charge coupled device (CCD) camera. It is important to figure out this phenomenon to deepen our understanding of leader discharge. The observation results showed that the leader mechanism is a very complex physical phenomenon; it could be categorized into two types of leader process, namely, continuous and the discontinuous leader streamer-leader propagation. Furthermore, we studied the continuous leader development parameters, including two-dimensional (2-D) leader length, injected charge, and final jump stage, as well as leader velocity for rod–plane configuration. We observed that the discontinuous leader makes an important contribution to the appearance of channel re-illuminations of the positive leader. The comparative study shows better results in terms of standard switch impulse and long front positive impulse. Finally, the results are presented with a view toward improving our understanding of propagation mechanisms related to restrike phenomena, which are rarely reported. To clarify the above doubts under long front cases, we carried out extensive experiments in this study.

Keywords: continuous and discontinuous leader, high-speed photographs, long air gap, positive long front impulse, restrike phenomena

Procedia PDF Downloads 163
528 Effect of Glass Powder and GGBS on Strength of Fly Ash Based Geopolymer Concrete

Authors: I. Ramesha Mithanthaya, N. Bhavanishankar Rao

Abstract:

In this study, the effect of glass powder (GP) and ground granulated blast furnace slag (GGBS) on the compressive strength of Fly ash based geopolymer concrete has been investigated. The mass ratio of fine aggregate (fA) to coarse aggregate (CA) was maintained constant. NAOH flakes dissolved in water was used as activating liquid and mixed with fly ash (FA) to produce geopolymer paste or cementing material. This paste was added to mixture of CA and fA to obtain geopolymer concrete. Cube samples were prepared from this concrete. The ranges of investigation parameters include GP/FA from 0% to 20%, and GGBS/ FA from 0% to 20% with constant amount of GP. All the samples were air cured inside laboratory under room temperature. Compressive strength of cube samples after 7 days and 28 days curing were determined. The test results are presented and discussed. Based on the results of limited tests a suitable composition of FA, GP and GGBS for constant quantity of CA and fA has been obtained to produce geopolymer concrete of M32. It is found that geopolymer concrete is 14% cheaper than concrete of same strength using OPC. The strength gain in the case of geo-polymer concrete is rather slow compared to that of Portland cement concrete. Tensile strength of this concrete was also determined by conducting flexure test on beam prepared using this concrete. During curing, up to 7days, greyish-white powder used to come out from all the surfaces of sample and it was found to be a mixture of Carbonates and Sulphides of Na, Mg and Fe. Detailed investigation is necessary to arrive at an optimum mixture composition for producing Geo-polymer concrete of required strength. Effect of greyish-white powder on the strength and durability of the concrete is to be studied.

Keywords: geopolymer, industrial waste, green material, cost effective material, eco-friendly material

Procedia PDF Downloads 537
527 REITs India- New Investment Avenue for Financing Urban Infrastructure in India

Authors: Rajat Kapoor

Abstract:

Indian Real Estate sector is the second largest employer after agriculture and is slated to grow at 30 percent over the next decade. Indian cities have shown tumultuous growth since last two decades. With the growing need of infrastructure, it has become inevitable for real estate sector to adopt more organized and transparent system of investment. SPVs such as REITs ensure transparency facilitating accessibility to invest in real estate for those who find it difficult to purchase real estate as an investment option with a realistic income expectation from their investment. RIETs or real estate investment trusts is an instrument of pooling funds similar to that of mutual funds. In a simpler term REIT is an Investment Vehicle in the form a trust which holds & manages large commercial rent¬ earning properties on behalf of investors and distributes most of its profit as dividends. REIT enables individual investors to invest their money in commercial real estate assets in a diversified portfolio and on the other hand provides fiscal liquidity to developers as easy exit option and channel funds for new projects. However, the success REIT is very much dependent on the taxation structure making such models attractive and adaptive enough for both developers and investors to opt for such investment option. This paper is intended to capture an overview of REITs with context to Indian real estate scenario.

Keywords: Indian real estate, real estate infrastructure trusts, urban finance, infrastructure investment trusts

Procedia PDF Downloads 464
526 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures

Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.

Abstract:

Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.

Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays

Procedia PDF Downloads 154
525 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation

Procedia PDF Downloads 252
524 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration

Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang

Abstract:

The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.

Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability

Procedia PDF Downloads 337
523 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition

Authors: Zainab A. Bu Sinnah, David I. Graham

Abstract:

The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.

Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition

Procedia PDF Downloads 226
522 A Loop between Victimhood and Women with Choice: Case of Trafficked North Korean Women in China

Authors: Jinah Kwon

Abstract:

Why are there North Korean women who prefer their life in China, living as an undocumented migrant, to legal residence in South Korea? What is the line between choice and coercion in trafficking and how does it relate to family, especially in Asian culture? Is family function as a haven in the unsecured world or a fetter against the better world? Are the current international mechanisms on trafficked victims fully reflecting the voices of the victims? This study is about the paradoxical conditions of North Korean women situated in China as the trafficked victim and as members of their Chinese family. In order to answer the questions above, this study explored the case of trafficked North Korean women in China. This mixed-methods study employed in-depth interviews of 18 trafficked women living in China and a survey of 98 North Korean origin women residing in South Korea. From the survey, 40 out of 98 women from the survey indicated an unexpected function of trafficking, which was used as a channel of supporting the subjectivity of women in the North Korean context. Such results supported the actual observation and narratives of North Korean women who experienced trafficking from the author’s two visits to the Northeastern area of China in 2012 and 2018, respectively. Based on the findings, the last part of the study makes policy implications on international trafficking mechanisms—theories by Gayatri Spivak and Herbert A. Simon was employed to approach the relatively less dealt aspect of trafficking.

Keywords: China, North Korean women, trafficking, victimhood

Procedia PDF Downloads 188
521 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.

Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 175
520 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria

Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla

Abstract:

The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.

Keywords: assessment, bridge, rehabilitation, sustainability

Procedia PDF Downloads 361
519 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 151
518 Blind Hybrid ARQ Retransmissions with Different Multiplexing between Time and Frequency for Ultra-Reliable Low-Latency Communications in 5G

Authors: Mohammad Tawhid Kawser, Ishrak Kabir, Sadia Sultana, Tanjim Ahmad

Abstract:

A promising service category of 5G, popularly known as Ultra-Reliable Low-Latency Communications (URLLC), is devoted to providing users with the staunchest fail-safe connections in the splits of a second. The reliability of data transfer, as offered by Hybrid ARQ (HARQ), should be employed as URLLC applications are highly error-sensitive. However, the delay added by HARQ ACK/NACK and retransmissions can degrade performance as URLLC applications are highly delay-sensitive too. To improve latency while maintaining reliability, this paper proposes the use of blind transmissions of redundancy versions exploiting the frequency diversity of wide bandwidth of 5G. The blind HARQ retransmissions proposed so far consider narrow bandwidth cases, for example, dedicated short range communication (DSRC), shared channels for device-to-device (D2D) communication, etc., and thus, do not gain much from the frequency diversity. The proposal also combines blind and ACK/NACK based retransmissions for different multiplexing options between time and frequency depending on the current radio channel quality and stringency of latency requirements. The wide bandwidth of 5G justifies that the proposed blind retransmission, without waiting for ACK/NACK, is not palpably extravagant. A simulation is performed to demonstrate the improvement in latency of the proposed scheme.

Keywords: 5G, URLLC, HARQ, latency, frequency diversity

Procedia PDF Downloads 20
517 Rare-Earth Ions Doped Lithium Niobate Crystals: Luminescence and Raman Spectroscopy

Authors: Ninel Kokanyan, Edvard Kokanyan, Anush Movsesyan, Marc D. Fontana

Abstract:

Lithium Niobate (LN) is one of the widely used ferroelectrics having a wide number of applications such as phase-conjugation, holographic storage, frequency doubling, SAW sensors. Furthermore, the possibility of doping with rare-earth ions leads to new laser applications. Ho and Tm dopants seem interesting due to laser emission obtained at around 2 µm. Raman spectroscopy is a powerful spectroscopic technique providing a possibility to obtain a number of information about physicochemical and also optical properties of a given material. Polarized Raman measurements were carried out on Ho and Tm doped LN crystals with excitation wavelengths of 532nm and 785nm. In obtained Raman anti-Stokes spectra, we detect expected modes according to Raman selection rules. In contrast, Raman Stokes spectra are significantly different compared to what is expected by selection rules. Additional forbidden lines are detected. These lines have quite high intensity and are well defined. Moreover, the intensity of mentioned additional lines increases with an increase of Ho or Tm concentrations in the crystal. These additional lines are attributed to emission lines reflecting the photoluminescence spectra of these crystals. It means that in our case we were able to detect, within a very good resolution, in the same Stokes spectrum, the transitions between the electronic states, and the vibrational states as well. The analysis of these data is reported as a function of Ho and Tm content, for different polarizations and wavelengths, of the incident laser beam. Results also highlight additional information about π and σ polarizations of crystals under study.

Keywords: lithium niobate, Raman spectroscopy, luminescence, rare-earth ions doped lithium niobate

Procedia PDF Downloads 214
516 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 269
515 The Impact of Fiscal Policy on Gross Domestic Product under Contributions of Level of External Debt in Developing Countries

Authors: Zohreh Bang Tavakoli, Shuktika Chatterjee

Abstract:

This study investigates the fiscal policy impact on countries’ economic growth in developing countries with a different external debt level. The fiscal policy effectiveness has been re-emphasized in the global financial crisis of 2008 with the external debt as its new contemporary driver (Ruščáková and Semančíková, 2016). According to Bouakez, (2014 ) different theories have proposed the economic consequence of fiscal policy, specifically for developing countries. However, fiscal policy literature is lacking research regarding the fiscal policy’s effectiveness with the external debt’s contributions through comprehensive study (Canh, 2018). Also, according to scholars, high levels of external debt will influence economic growth. First, through foreign resources and channel of investment in which high level of debt decreases the amount of foreign investment in the developing countries. Second, through the deterioration of foreign investors and fiscal policies related to a high level of debt (Cordella, et.al., 2010). Therefore, this study proposed that only countries with a low external debt level and appropriate fiscal policies and good quality institutions can gain the proper quantity and quality of foreign investors, which will help the economic growth. For this, this research is examining the impact of fiscal policy on developing countries' economic growth in the situation of different external debt levels.

Keywords: fiscal policy, external debt, gross domestic product, developing countries

Procedia PDF Downloads 152
514 Mental Illness on Youtube: Exploring Identity Performance in the Virtual Space

Authors: P. Saee, Baiju Gopal

Abstract:

YouTube has seen a surge in the recent years in the number of creators opening up about their mental illness on the video-sharing platform. In documenting their mental health, YouTubers perform an identity of their mental illness in the online world. Identity performance is a theory under identity research that has been readily applied to illness narratives and internet studies. Furthermore, in India, suffering from mental illnesses is regarded with stigma, making the act of taking mental health from a personal to a public space on YouTube a phenomenon worth exploring. Thus, the aim of this paper is to analyse the mental illness narratives of Indian YouTubers for understanding its performance in the virtual world. For this purpose, thematic narrative analysis on the interviews of four Indian YouTubers was conducted. This data was synthesized with analysis of the videos the YouTubers had uploaded on their channel sharing about their mental illness. The narratives of the participants shed light on two significant presentations that they engage in: (a) the identity of a survivor/fighter and (b) the identity of a silent sufferer. Further, the participants used metaphors to describe their illness, thereby co-constructing a corresponding identity based on their particular metaphors. Lastly, the process of bringing mental illness from back stage to front stage on YouTube involves a shift in the audience, from being rejecting and invalidating in real life to being supportive and encouraging in the virtual space. Limitations and implications for future research were outlined.

Keywords: cyber-psychology, internet, media, mental health, mental illness, technology

Procedia PDF Downloads 169
513 The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes

Authors: Khaled Suleiman Mohammed Al-Mashrafi

Abstract:

A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable.

Keywords: compositional plumes, stability, bounded domain, vertical boundaries

Procedia PDF Downloads 15
512 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation

Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)

Procedia PDF Downloads 365
511 Modified Model for UV-Laser Corneal Ablation

Authors: Salah Hassab Elnaby, Omnia Hamdy, Aziza Ahmed Hassan, Salwa Abdelkawi, Ibrahim Abdelhalim

Abstract:

Laser corneal reshaping has been proposed as a successful treatment of many refraction disorders. However, some physical and chemical demonstrations of the laser effect upon interaction with the corneal tissue are still not fully explained. Therefore, different computational and mathematical models have been implemented to predict the depth of the ablated channel and calculate the ablation threshold and the local temperature rise. In the current paper, we present a modified model that aims to answer some of the open questions about the ablation threshold, the ablation rate, and the physical and chemical mechanisms of that action. The proposed model consists of three parts. The first part deals with possible photochemical reactions between the incident photons and various components of the cornea (collagen, water, etc.). Such photochemical reactions may end by photo-ablation or just the electronic excitation of molecules. Then a chemical reaction is responsible for the ablation threshold. Finally, another chemical reaction produces fragments that can be cleared out. The model takes into account all processes at the same time with different probabilities. Moreover, the effect of applying different laser wavelengths that have been studied before, namely the common excimer laser (193-nm) and the solid state lasers (213-nm & 266-nm), has been investigated. Despite the success and ubiquity of the ArF laser, the presented results reveal that a carefully designed 213-nm laser gives the same results with lower operational drawbacks. Moreover, the use of mode locked laser could also decrease the risk of heat generation and diffusion.

Keywords: UV lasers, mathematical model, corneal ablation, photochemical ablation

Procedia PDF Downloads 76
510 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption

Authors: Robert Joseph M. Licup

Abstract:

The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.

Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption

Procedia PDF Downloads 98
509 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio

Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu

Abstract:

The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.

Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion

Procedia PDF Downloads 271