Search results for: integrating sensing and modeling system
20237 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling
Authors: Syed Masood Hussain
Abstract:
An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter
Procedia PDF Downloads 54720236 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 9220235 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution
Authors: Noora Al-Shanfari, M. Mazharul Islam
Abstract:
The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis
Procedia PDF Downloads 10420234 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures
Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee
Abstract:
This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.Keywords: structural vibration control, wireless system, MR damper, feedback control, embedded system
Procedia PDF Downloads 21120233 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 14720232 Effect of Dissolved Oxygen Concentration on Iron Dissolution by Liquid Sodium
Authors: Sami Meddeb, M. L Giorgi, J. L. Courouau
Abstract:
This work presents the progress of studies aiming to guarantee the lifetime of 316L(N) steel in a sodium-cooled fast reactor by determining the elementary corrosion mechanism, which is akin to an accelerated dissolution by dissolved oxygen. The mechanism involving iron, the main element of steel, is particularly studied in detail, from the viewpoint of the data available in the literature, the modeling of the various mechanisms hypothesized. Experiments performed in the CORRONa facility at controlled temperature and dissolved oxygen content are used to test both literature data and hypotheses. Current tests, performed at various temperatures and oxygen content, focus on specifying the chemical reaction at play, determining its free enthalpy, as well as kinetics rate constants. Specific test configuration allows measuring the reaction kinetics and the chemical equilibrium state in the same test. In the current state of progress of these tests, the dissolution of iron accelerated by dissolved oxygen appears as directly related to a chemical complexation reaction of mixed iron-sodium oxide (Na-Fe-O), a compound that is soluble in the liquid sodium solution. Results obtained demonstrate the presence in the solution of this corrosion product, whose kinetics is the limiting step under the conditions of the test. This compound, the object of hypotheses dating back more than 50 years, is predominant in solution compared to atomic iron, presumably even for the low oxygen concentration, and cannot be neglected for the long-term corrosion modeling of any heat transfer system.Keywords: corrosion, sodium fast reactors, iron, oxygen
Procedia PDF Downloads 17920231 The Harmonious Blend of Digitalization and 3D Printing: Advancing Aerospace Jet Pump Development
Authors: Subrata Sarkar
Abstract:
The aerospace industry is experiencing a profound product development transformation driven by the powerful integration of digitalization and 3D printing technologies. This paper delves into the significant impact of this convergence on aerospace innovation, specifically focusing on developing jet pumps for fuel systems. This case study is a compelling example of the immense potential of these technologies. In response to the industry's increasing demand for lighter, more efficient, and customized components, the combined capabilities of digitalization and 3D printing are reshaping how we envision, design, and manufacture critical aircraft parts, offering a distinct paradigm in aerospace engineering. Consider the development of a jet pump for a fuel system, a task that presents unique and complex challenges. Despite its seemingly simple design, the jet pump's development is hindered by many demanding operating conditions. The qualification process for these pumps involves many analyses and tests, leading to substantial delays and increased costs in fuel system development. However, by harnessing the power of automated simulations and integrating legacy design, manufacturing, and test data through digitalization, we can optimize the jet pump's design and performance, thereby revolutionizing product development. Furthermore, 3D printing's ability to create intricate structures using various materials, from lightweight polymers to high-strength alloys, holds the promise of highly efficient and durable jet pumps. The combined impact of digitalization and 3D printing extends beyond design, as it also reduces material waste and advances sustainability goals, aligning with the industry's increasing commitment to environmental responsibility. In conclusion, the convergence of digitalization and 3D printing is not just a technological advancement but a gateway to a new era in aerospace product development, particularly in the design of jet pumps. This revolution promises to redefine how we create aerospace components, making them safer, more efficient, and environmentally responsible. As we stand at the forefront of this technological revolution, aerospace companies must embrace these technologies as a choice and a strategic imperative for those striving to lead in innovation and sustainability in the 21st century.Keywords: jet pump, digitalization, 3D printing, aircraft fuel system.
Procedia PDF Downloads 5620230 An Analysis and Design of Mobile Payment System Based on NFC Technology
Authors: Shafiq ur Rehman, Zubair Ahmed Shaikh
Abstract:
This research provides the comparative study of different mobile payment system and proposes an efficient solution of mobile payment system. The research involves discovering how the mobile payment methods can be used and implemented keeping user and system interaction under consideration. The implementation of Nielsen’s heuristic and universal design principles enhanced the user’s interaction design and made the system more appropriate, understandable and visible to the end user. The design of application is greatly affected by the user driven factors. These factors help in the efficiency of the application usage.Keywords: mobile payment system, m-commerce, usability, near field communication
Procedia PDF Downloads 45220229 Development of a Hamster Knowledge System Based on Android Application
Authors: Satien Janpla, Thanawan Boonpuck, Pattarapan Roonrakwit
Abstract:
In this paper, we present a hamster knowledge system based on android application. The objective of this system is to advice user to upkeep and feed hamsters based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on knowledge based of hamster experts. The results were divided by the research purposes into 2 parts: developing the mobile application for advice users and testing and evaluating the system. Black box technique was used to evaluate application performances and questionnaires were applied to measure user satisfaction with system usability by specialists and users.Keywords: hamster knowledge, Android application, black box, questionnaires
Procedia PDF Downloads 34120228 Study on Beta-Ray Detection System in Water Using a MCNP Simulation
Authors: Ki Hyun Park, Hye Min Park, Jeong Ho Kim, Chan Jong Park, Koan Sik Joo
Abstract:
In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development.Keywords: Beta-ray, CaF₂, detector, MCNP simulation, scintillator
Procedia PDF Downloads 51020227 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 14320226 Numerical Simulation of Plasma Actuator Using OpenFOAM
Authors: H. Yazdani, K. Ghorbanian
Abstract:
This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.Keywords: active flow control, flow-field, OpenFOAM, plasma actuator
Procedia PDF Downloads 30620225 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 45320224 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 42120223 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance
Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor
Abstract:
As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance
Procedia PDF Downloads 40820222 Radio-Frequency Identification (RFID) Based Smart Helmet for Coal Miners
Authors: Waheeda Jabbar, Ali Gul, Rida Noor, Sania Kurd, Saba Gulzar
Abstract:
Hundreds of miners die from mining accidents each year due to poisonous gases found underground mining areas. This paper proposed an idea to protect the precious lives of mining workers. A supervising system is designed which is based on ZigBee wireless technique along with the smart protective helmets to detect real-time surveillance and it gives early warnings on presence of different poisonous gases in order to save mineworkers from any danger caused by these poisonous gases. A wireless sensor network is established using ZigBee wireless technique by integrating sensors on the helmet, apart from this helmet have embedded heartbeat sensor to detect the pulse rate and be aware of the physical or mental strength of a mineworker to increase the potential safety. Radio frequency identification (RFID) technology is used to find the location of workers. A ZigBee based base station is set-upped to control the communication. The idea is implemented and results are verified through experiment.Keywords: Arduino, gas sensor (MQ7), RFID, wireless ZigBee
Procedia PDF Downloads 45520221 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 6220220 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management
Authors: M. Shahab Uddin, Pennung Warnitchai
Abstract:
Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system
Procedia PDF Downloads 22720219 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 5520218 Anthropomorphic Interfaces For User Trust in a Highly Automated Driving
Authors: Clarisse Lawson-Guidigbe, Nicolas Louveton, Kahina Amokrane-Ferka, Jean-Marc Andre
Abstract:
Trust in automated driving systems is receiving growing attention in the research community. Anthropomorphism has been identified by past research as a trust-building factor. In this paper, we consider three anthropomorphic interfaces integrating three versions of a virtual assistant. We attempt to measure the impact of each of these interfaces on trust in the automated driving system. An experiment following a between-subject design was conducted in a driving simulator (N = 36) to evaluate participants’ performance and experience in two handover situations (a simple one and a critical one). Perception of anthropomorphism and trust was measured using scales, while participants’ experience was measured during elicitation interviews. We found no significant difference between the three interfaces regarding the perception of anthropomorphism, trust levels, or experience. However, regarding participants’ performance, we found a significant difference between the three interfaces in the simple handover situations but not the critical one. Learnings from anthropomorphism and trust measurement scales are discussed and suggestions for further research are proposed.Keywords: highly automated driving, trust, anthropomorphic design, mindful anthropomorphism, mindless anthropomorphism
Procedia PDF Downloads 14720217 Research Repository System (RRS) for Academics
Authors: Ajayi Olusola Olajide, O. Ojeyinka Taiwo, Adeolara Oluwawemimo Janet, Isheyemi Olufemi Gabriel, Lawal Muideen Adekunle
Abstract:
In an academic world where research work is the tool for promotion and elevation to higher cadres, the quest for a system that secure researchers’ work, monitor as well as alert researchers of pending academic research work, cannot be over-emphasized. This study describes how a research repository system for academics is designed. The invention further relates to a system for archiving any paperwork and journal that comprises of a database for storing all researches. It relates to a method for users to communicate through messages which will also allow reviewing all the messages. To create this research repository system, PHP and MySQL were married together for the system implementation.Keywords: research, repository, academic, archiving, secure, system, implementation
Procedia PDF Downloads 58820216 Communication Infrastructure Required for a Driver Behaviour Monitoring System, ‘SiaMOTO’ IT Platform
Authors: Dogaru-Ulieru Valentin, Sălișteanu Ioan Corneliu, Ardeleanu Mihăiță Nicolae, Broscăreanu Ștefan, Sălișteanu Bogdan, Mihai Mihail
Abstract:
The SiaMOTO system is a communications and data processing platform for vehicle traffic. The human factor is the most important factor in the generation of this data, as the driver is the one who dictates the trajectory of the vehicle. Like any trajectory, specific parameters refer to position, speed and acceleration. Constant knowledge of these parameters allows complex analyses. Roadways allow many vehicles to travel through their confined space, and the overlapping trajectories of several vehicles increase the likelihood of collision events, known as road accidents. Any such event has causes that lead to its occurrence, so the conditions for its occurrence are known. The human factor is predominant in deciding the trajectory parameters of the vehicle on the road, so monitoring it by knowing the events reported by the DiaMOTO device over time, will generate a guide to target any potentially high-risk driving behavior and reward those who control the driving phenomenon well. In this paper, we have focused on detailing the communication infrastructure of the DiaMOTO device with the traffic data collection server, the infrastructure through which the database that will be used for complex AI/DLM analysis is built. The central element of this description is the data string in CODEC-8 format sent by the DiaMOTO device to the SiaMOTO collection server database. The data presented are specific to a functional infrastructure implemented in an experimental model stage, by installing on a number of 50 vehicles DiaMOTO unique code devices, integrating ADAS and GPS functions, through which vehicle trajectories can be monitored 24 hours a day.Keywords: DiaMOTO, Codec-8, ADAS, GPS, driver monitoring
Procedia PDF Downloads 7820215 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad
Abstract:
Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.Keywords: optimization, voltage transformer, ferroresonance, modeling, damper
Procedia PDF Downloads 10120214 Human Resource Information System: Role in HRM Practices and Organizational Performance
Authors: Ejaz Ali M. Phil
Abstract:
Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.Keywords: enterprise resource planning, human resource, information system, human capital
Procedia PDF Downloads 39620213 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare
Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams
Abstract:
The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph
Procedia PDF Downloads 17520212 Modeling and Optimization of Micro-Grid Using Genetic Algorithm
Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi
Abstract:
This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.Keywords: micro-grid, optimization, genetic algorithm, MG
Procedia PDF Downloads 51120211 Modeling Environmental, Social, and Governance Financial Assets with Lévy Subordinated Processes and Option Pricing
Authors: Abootaleb Shirvani, Svetlozar Rachev
Abstract:
ESG stands for Environmental, Social, and Governance and is a non-financial factor that investors use to specify material risks and growth opportunities in their analysis process. ESG ratings provide a quantitative measure of socially responsible investment, and it is essential to incorporate ESG ratings when modeling the dynamics of asset returns. In this article, we propose a triple subordinated Lévy process for incorporating numeric ESG ratings into dynamic asset pricing theory to model the time series properties of the stock returns. The motivation for introducing three layers of subordinator is twofold. The first two layers of subordinator capture the skew and fat-tailed properties of the stock return distribution that cannot be explained well by the existing Lévy subordinated model. The third layer of the subordinator introduces ESG valuation and incorporates numeric ESG ratings into dynamic asset pricing theory and option pricing. We employ the triple subordinator Lévy model for developing the ESG-valued stock return model, derive the implied ESG score surfaces for Microsoft, Apple, and Amazon stock returns, and compare the shape of the ESG implied surface scores for these stocks.Keywords: ESG scores, dynamic asset pricing theory, multiple subordinated modeling, Lévy processes, option pricing
Procedia PDF Downloads 8120210 Dental Education in Brazil: A Systematic Literature Review
Authors: Fabiane Alves Farias Guimarães, Rodrigo Otávio Moretti-Pires, Ana Lúcia Schaefer Ferreira de Mello
Abstract:
Introduction: Considering the last changes in Brazilian Health and Higher Educational Systems, the production of scientific knowledge regarding dental education and training has been increasing. The National Curriculum Guidelines for undergraduate courses in Dentistry established in 2002 the principles and procedures to perform a more generalist dental professional profile. Objectives: To perform a systematic review of the Brazilian scientific literature about dental education and training. Methods: The systematic review was conducted considering the Lilacs - Latin American Literature in Health Sciences and SciELO - Scientific Electronic Library Online data bases, using the combination of key words dentistry, education, teaching or training. It was select original research articles, published between 2010 and 2013, in Portuguese. Results: Based on the selection criteria, it was found 23 articles. In order to organize the outcomes, the analysis was separated in three themes: Ethical aspects of education (3 articles), integrating dental service with training (10 articles) and Dental education and the Brazilian curriculum guidelines (10 articles). Most of the studies were published between 2011 and 2012 (35% each) and were held in public universities. The studied populations included dental students, teachers, universities directors, health managers and dentists. The qualitative methodological approach was predominant. Conclusion: It was possible to identify a transience time in Brazilian undergraduate courses in Dentistry after curricular changes. The produced literature shows some advances, as the incorporation of ethical values on dental education and the inclusion of new practices environments for students by integrating education and training in diversified dental services scenarios.Keywords: Teaching, Dental Students, Human resources in dentistry
Procedia PDF Downloads 53220209 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air
Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli
Abstract:
Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.Keywords: air pollution, dust, numerical modeling, urban
Procedia PDF Downloads 18720208 Enterpreneurship as a Strategic Tool for Higher Productivity in Nigerian Universities System
Authors: Yahaya Salihu Emeje, Amuchie Austine Anthony
Abstract:
The topic examined the prospects of entrepreneurship as an emerging dynamic and strategic tool in the upliftment of human and non-human resources in the Nigerian university system, with a view of showcasing the abundant positive impact, on the Nigerian University system in particular and Nigerian economy at large. It is end at bringing out the benefits of entrepreneurship in the university system which includes, namely cultivating the culture of enterprise in University system; improvement in the quality and quantity of both human and non-human resources; innovative and creative methods of production; new employment strategies in the University system; improved sources of internal generated revenue; entrepreneurship as the culture of sustainability within and outside the university system. Secondary data was used in analyzing entrepreneurship as a productivity tool in the Nigeria University system. From the findings, the university system could be enriched through innovative ideas and technical revenue and employment generation; sustainable financial and economic base; university autonomy and improved international ranking of Nigerian Universities system; therefore, recommended that entrepreneurship is necessary therapy for reviving the ailing, Nigerian universities system.Keywords: entrepreneurship, strategic, productivity, universities
Procedia PDF Downloads 394