Search results for: Saudi Arabia Vision 2030
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2038

Search results for: Saudi Arabia Vision 2030

358 Influence of Infinite Elements in Vibration Analysis of High-Speed Railway Track

Authors: Janaki Rama Raju Patchamatla, Emani Pavan Kumar

Abstract:

The idea of increasing the existing train speeds and introduction of the high-speed trains in India as a part of Vision-2020 is really challenging from both economic viability and technical feasibility. More than economic viability, technical feasibility has to be thoroughly checked for safe operation and execution. Trains moving at high speeds need a well-established firm and safe track thoroughly tested against vibration effects. With increased speeds of trains, the track structure and layered soil-structure interaction have to be critically assessed for vibration and displacements. Physical establishment of track, testing and experimentation is a costly and time taking process. Software-based modelling and simulation give relatively reliable, cost-effective means of testing effects of critical parameters like sleeper design and density, properties of track and sub-grade, etc. The present paper reports the applicability of infinite elements in reducing the unrealistic stress-wave reflections from so-called soil-structure interface. The influence of the infinite elements is quantified in terms of the displacement time histories of adjoining soil and the deformation pattern in general. In addition, the railhead response histories at various locations show that the numerical model is realistic without any aberrations at the boundaries. The numerical model is quite promising in its ability to simulate the critical parameters of track design.

Keywords: high speed railway track, finite element method, Infinite elements, vibration analysis, soil-structure interface

Procedia PDF Downloads 270
357 Mnemotopic Perspectives: Communication Design as Stabilizer for the Memory of Places

Authors: C. Galasso

Abstract:

The ancestral relationship between humans and geographical environment has long been at the center of an interdisciplinary dialogue, which sees one of its main research nodes in the relationship between memory and places. Given its deep complexity, this symbiotic connection continues to look for a proper definition that appears increasingly negotiated by different disciplines. Numerous fields of knowledge are involved, from anthropology to semiotics of space, from photography to architecture, up to subjects traditionally far from these reasonings. This is the case of Design of Communication, a young discipline, now confident in itself and its objectives, aimed at finding and investigating original forms of visualization and representation, between sedimented knowledge and new technologies. In particular, Design of Communication for the Territory offers an alternative perspective to the debate, encouraging the reactivation and reconstruction of the memory of places. Recognizing mnemotopes as a cultural object of vertical interpretation of the memory-place relationship, design can become a real mediator of the territorial fixation of memories, making them increasingly accessible and perceptible, contributing to build a topography of memory. According to a mnemotopic vision, Communication Design can support the passage from a memory in which the observer participates only as an individual to a collective form of memory. A mnemotopic form of Communication Design can, through geolocation and content map-based systems, make chronology a topography rooted in the territory and practicable; it can be useful to understand how the perception of the memory of places changes over time, considering how to insert them in the contemporary world. Mnemotopes can be materialized in different format of translation, editing and narration and then involved in complex systems of communication. The memory of places, therefore, if stabilized by the tools offered by Communication Design, can make visible ruins and territorial stratifications, illuminating them with new communicative interests that can be shared and participated.

Keywords: memory of places, design of communication, territory, mnemotope, topography of memory

Procedia PDF Downloads 131
356 Time Driven Activity Based Costing Capability to Improve Logistics Performance: Application in Manufacturing Context

Authors: Siham Rahoui, Amr Mahfouz, Amr Arisha

Abstract:

In a highly competitive environment characterised by uncertainty and disruptions, such as the recent COVID-19 outbreak, supply chains (SC) face the challenge of maintaining their cost at minimum levels while continuing to provide customers with high-quality products and services. More importantly, businesses in such an economic context strive to maintain survival by keeping the cost of undertaken activities (such as logistics) low and in-house. To do so, managers need to understand the costs associated with different products and services in order to have a clear vision of the SC performance, maintain profitability levels, and make strategic decisions. In this context, SC literature explored different costing models that sought to determine the costs of undertaking supply chain-related activities. While some cost accounting techniques have been extensively explored in the SC context, more contributions are needed to explore the potential of time driven activity-based costing (TDABC). More specifically, more applications are needed in the manufacturing context of the SC, where the debate is ongoing. The aim of the study is to assess the capability of the technique to assess the operational performance of the logistics function. Through a case study methodology applied to a manufacturing company operating in the automotive industry, TDABC evaluates the efficiency of the current configuration and its logistics processes. The study shows that monitoring the process efficiency and cost efficiency leads to strategic decisions that contributed to improve the overall efficiency of the logistics processes.

Keywords: efficiency, operational performance, supply chain costing, time driven activity based costing

Procedia PDF Downloads 161
355 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 77
354 Necrotising Anterior Scleritis and Scleroderma: A Rare Association

Authors: Angeliki Vassila, Dimitrios Kalogeropoulos, Rania Rawashdeh, Nigel Hall, Najiha Rahman, Mark Fabian, Suresh Thulasidharan, Hossain Parwez

Abstract:

Introduction: Necrotising scleritis is a severe form of scleritis and poses a significant threat to vision. It can manifest in various systemic autoimmune disorders, systemic vasculitis, or as a consequence of microbial infections. The objective of this study is to present a case of necrotizing scleritis associated with scleroderma, which was further complicated by a secondary Staphylococcus epidermidis infection. Methods: This is a retrospective analysis that examines the medical records of a patient who was hospitalised in the Eye Unit at University Hospital Southampton. Results: A 78-year-old woman presented at the eye casualty department of our unit with a two-week history of progressively worsening pain in her left eye. She received a diagnosis of necrotising scleritis and was admitted to the hospital for further treatment. It was decided to commence a three-day course of intravenous methylprednisolone followed by a tapering regimen of oral steroids. Additionally, a conjunctival swab was taken, and two days later, it revealed the presence of S. epidermidis, indicating a potential secondary infection. Given this finding, she was also prescribed topical (Ofloxacin 0.3% - four times daily) and oral (Ciprofloxacin 750mg – twice daily) antibiotics. The inflammation and symptoms gradually improved, leading to the patient being scheduled for a scleral graft and applying an amniotic membrane to cover the area of scleral thinning. Conclusions: Rheumatoid arthritis and granulomatosis with polyangiitis are the most commonly identifiable systemic diseases associated with necrotising scleritis. Although association with scleroderma is extremely rare, early identification and treatment are necessary to prevent scleritis-related complications.

Keywords: scleritis, necrotizing scleritis, scleroderma, autoimmune disease

Procedia PDF Downloads 28
353 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 68
352 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 149
351 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement

Authors: Hu Zhenxing, Gao Jianxin

Abstract:

Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.

Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D

Procedia PDF Downloads 495
350 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 90
349 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 360
348 Creating Systems Change: Implementing Cross-Sector Initiatives within the Justice System to Support Ontarians with Mental Health and Addictions Needs

Authors: Tania Breton, Dorina Simeonov, Shauna MacEachern

Abstract:

Ontario’s 10 Year Mental Health and Addictions Strategy has included the establishment of 18 Service Collaborative across the province; cross-sector tables in a specific region coming together to explore mental health and addiction system needs and adopting an intervention to address that need. The process is community led and supported by implementation teams from the Centre for Addiction and Mental Health (CAMH), using the framework of implementation science (IS) to enable evidence-based and sustained change. These justice initiatives are focused on the intersection of the justice system and the mental health and addiction systems. In this presentation, we will share the learnings, achievements and challenges of implementing innovative practices to the mental health and addictions needs of Ontarians within the justice system. Specifically, we will focus on the key points across the justice system - from early intervention and trauma-informed, culturally appropriate services to post-sentence support and community reintegration. Our approach to this work involves external implementation support from the CAMH team including coaching, knowledge exchange, evaluation, Aboriginal engagement and health equity expertise. Agencies supported the implementation of tools and processes which changed practice at the local level. These practices are being scaled up across Ontario and community agencies have come together in an unprecedented collaboration and there is a shared vision of the issues overlapping between the mental health, addictions and justice systems. Working with ministry partners has allowed space for innovation and created an environment where better approaches can be nurtured and spread.

Keywords: implementation, innovation, early identification, mental health and addictions, prevention, systems

Procedia PDF Downloads 361
347 Excited State Structural Dynamics of Retinal Isomerization Revealed by a Femtosecond X-Ray Laser

Authors: Przemyslaw Nogly, Tobias Weinert, Daniel James, Sergio Carbajo, Dmitry Ozerov, Antonia Furrer, Dardan Gashi, Veniamin Borin, Petr Skopintsev, Kathrin Jaeger, Karol Nass, Petra Bath, Robert Bosman, Jason Koglin, Matthew Seaberg, Thomas Lane, Demet Kekilli, Steffen Brünle, Tomoyuki Tanaka, Wenting Wu, Christopher Milne, Thomas A. White, Anton Barty, Uwe Weierstall, Valerie Panneels, Eriko Nango, So Iwata, Mark Hunter, Igor Schapiro, Gebhard Schertler, Richard Neutze, Jörg Standfuss

Abstract:

Ultrafast isomerization of retinal is the primary step in a range of photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an X-ray laser. Twenty snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket prior to passing through a highly-twisted geometry and emerging in the 13-cis conformation. The aspartic acid residues and functional water molecules in proximity of the retinal Schiff base respond collectively to formation and decay of the initial excited state and retinal isomerization. These observations reveal how the protein scaffold guides this remarkably efficient photochemical reaction.

Keywords: bacteriorhodopsin, free-electron laser, retinal isomerization mechanism, time-resolved crystallography

Procedia PDF Downloads 247
346 Floating Building Potential for Adaptation to Rising Sea Levels: Development of a Performance Based Building Design Framework

Authors: Livia Calcagni

Abstract:

Most of the largest cities in the world are located in areas that are vulnerable to coastal erosion and flooding, both linked to climate change and rising sea levels (RSL). Nevertheless, more and more people are moving to these vulnerable areas as cities keep growing. Architects, engineers and policy makers are called to rethink the way we live and to provide timely and adequate responses not only by investigating measures to improve the urban fabric, but also by developing strategies capable of planning change, exploring unusual and resilient frontiers of living, such as floating architecture. Since the beginning of the 21st century we have seen a dynamic growth of water-based architecture. At the same time, the shortage of land available for urban development also led to reclaim the seabed or to build floating structures. In light of these considerations, time is ripe to consider floating architecture not only as a full-fledged building typology but especially as a full-fledged adaptation solution for RSL. Currently, there is no global international legal framework for urban development on water and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, the research intends to identify the technological, morphological, functional, economic, managerial requirements that must be considered in a the development of the PBBD framework conceived as a meta-design tool. As it is expected that floating urban development is mostly likely to take place as extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than of the offshore industry. Therefor, the identification and categorization of parameters takes the urban-architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics, from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of performance guidelines and regulatory systems that are effective in different countries around the world addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, this paper highlights how inhabiting water is not only a viable response to the problem of RSL, thus a resilient frontier for urban development, but also a response to energy insecurity, clean water and food shortages, environmental concerns and urbanization, in line with Blue Economy principles and the Agenda 2030. Moreover, the discipline of architecture is presented as a fertile field for investigating solutions to cope with climate change and its effects on life safety and quality. Future research involves the development of a decision support system as an information tool to guide the user through the decision-making process, emphasizing the logical interaction between the different potential choices, based on the PBBD.

Keywords: adaptation measures, floating architecture, performance based building design, resilient architecture, rising sea levels

Procedia PDF Downloads 85
345 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 185
344 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 108
343 Visual Improvement Outcome of Pars Plana Vitrectomy Combined Endofragmentation and Secondary IOL Implantation for Dropped Nucleus After Cataract Surgery : A Case Report

Authors: Saut Samuel Simamora

Abstract:

PURPOSE: Nucleus drop is one of the most feared and severe complications of modern cataract surgery. The lens material may drop through iatrogenic breaks of the posterior capsule. The incidence of the nucleus as the complication of phacoemulsification increases concomitant to the increased frequency of phacoemulsification. Pars plana vitrectomy (PPV) followed by endofragmentation and secondary intraocular lens (IOL) implantation is the choice of management procedure. This case report aims to present the outcome of PPV for the treatment dropped nucleus after cataract surgery METHODS: A 65 year old female patient came to Vitreoretina department with chief complaints blurry vision in her left eye after phacoemulsification one month before. Ophthalmological examination revealed visual acuity of the right eye (VA RE) was 6/15, and the left eye (VA LE) was hand movement. The intraocular pressure (IOP) on the right eye was 18 mmHg, and on the left eye was 59 mmHg. On her left eye, there were aphakic, dropped lens nucleus and secondary glaucoma.RESULTS: The patient got antiglaucoma agent until her IOP was decreased. She underwent pars plana vitrectomy to remove dropped nucleus and iris fixated IOL. One week post operative evaluation revealed VA LE was 6/7.5 and iris fixated IOL in proper position. CONCLUSIONS: Nucleus drop generally occurs in phacoemulsification cataract surgery techniques. Retained lens nucleus or fragments in the vitreous may cause severe intraocular inflammation leading to secondary glaucoma. The proper and good management for retained lens fragments in nucleus drop give excellent outcome to patient.

Keywords: secondary glaucoma, complication of phacoemulsification, nucleus drop, pars plana vitrectomy

Procedia PDF Downloads 78
342 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
341 Bilateral Simultaneous Acute Primary Angle Closure Glaucoma: A Remarkable Case

Authors: Nita Nurlaila Kadarwaty

Abstract:

Purpose: This study presents a rare case of bilateral Acute Primary Angle Closure Glaucoma (PACG). Method: A case report of a 64-year-old woman with a good outcome Acute PACG in both eyes who underwent phacotrabeculectomy surgery. Result: A 64-year-old woman complained of acute pain in both eyes, accompanied by decreased vision, photophobia, and seeing halos for three weeks. There was no history of trauma, steroid or other systemic drugs used, or intraocular surgery before. Ophthalmologic examination revealed a right eye (RE) visual acuity of 0.1, left eye (LE) 0.2. RE intraocular pressure (IOP) was 12 mmhg and LE: 36.4 mmHg in medication of timolol maleat ED and acetazolamide oral. Both eyes' anterior segments revealed mixed injection, corneal edema, shallow anterior chamber, posterior synechiae, mid-dilatation pupil with negative pupillary reflection, and cloudy lens without intumescent. There was a glaucomatous optic and closed iridocorneal angle on the gonioscopy. Initial treatments included oral acetazolamide and potassium aspartate 250 mg three times a day, timolol maleate ED 0.5% twice a day, and prednisolone acetate ED 1% four times a day. This patient underwent trabeculectomy, phacoemulsification, and implantation of IOL in both eyes. One week after the surgeries, both eyes showed decreased IOP and good visual improvement. Conclusion: Bilateral simultaneous Acute PACG is generally severe and results in a poor outcome. It causes rapidly progressive visual loss and is often irreversible. Phacotrabeculectomy has more benefits compared to only phacoemulsification for the intervention regarding the reduced IOP post-surgical.

Keywords: acute primary angle closure glaucoma, intraocular pressure, phacotrabeculectomy, glaucoma

Procedia PDF Downloads 72
340 Prevalence of Visual Impairment among School Children in Ethiopia: A Systematic Review and Meta-Analysis

Authors: Merkineh Markos Lorato, Gedefaw Diress Alene

Abstract:

Introduction: Visual impairment is any condition of the eye or visual system that results in loss/reduction of visual functioning. It significantly influences the academic routine and social activities of children, and the effect is severe for low-income countries like Ethiopia. So, this study aimed to determine the pooled prevalence of visual impairment among school children in Ethiopia. Methods: Databases such as Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, World Wide Web of Science, and Cochrane Library searched to retrieve eligible articles. In addition, Google Scholar and a reference list of the retrieved eligible articles were addressed. Studies that reported the prevalence of visual impairment were included to estimate the pooled prevalence. Data were extracted using a standardized data extraction format prepared in Microsoft Excel and analysis was held using STATA 11 statistical software. I² was used to assess the heterogeneity. Because of considerable heterogeneity, a random effect meta-analysis model was used to estimate the pooled prevalence of visual impairment among school children in Ethiopia. Results: The result of 9 eligible studies showed that the pooled prevalence of visual impairment among school children in Ethiopia was 7.01% (95% CI: 5.46, 8.56%). In the subgroup analysis, the highest prevalence was reported in South Nations Nationalities and Tigray region together (7.99%; 3.63, 12.35), while the lowest prevalence was reported in Addis Ababa (5.73%; 3.93, 7.53). Conclusion: The prevalence of visual impairment among school children is significantly high in Ethiopia. If it is not detected and intervened early, it will cause a lifetime threat to visually impaired school children, so that school vision screening program plan and its implementation may cure the life quality of future generations in Ethiopia.

Keywords: visual impairment, school children, Ethiopia, prevalence

Procedia PDF Downloads 35
339 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 137
338 The Study of Self-Care Regarding to the Valuable Living in Thai Elderly

Authors: Pannathorn Chachvarat, Smarnjit Piromrun

Abstract:

Aging is the reality for the future world. An urgent priority for the development of the elderlies’ quality living is needed. The promotion of quality the elderly to live longer in their dignity and being independence are essential. The objective of this descriptive research was to study the self-care regarding to the valuable living in Thai elderly. The randomized sample was 100 elderly who live in Muang district of Phayao province. The tools included 2 parts; 1) Personal data (gender, age, income, occupation, marital status, living condition and disease), and 2) the self-care regarding to the valuable living questionnaire consisted of 3 domains, physical (21items), spiritual (13 items) and social domain (12 items). The content validity tool was tested the IOC ranged between 0.60 – 1.00 and the reliability test, Cronbach Alpha was 0.82. The research found that; The most participants were female (60 %), Farmer (37%), and underlying disease (65 %). The range of age was 68 years. Overall of the self-care regarding to the valuable living of physical, spiritual and social were at the high level.The highest level of physical activities was self-taking bath twice a day (morning and evening), and slept at least 5-6 hours at night time.The highest level of spirit activities was a good member of the family, contributions to persons in family, good emotion. Additionally were enjoyable, accepting changes in the body such as the dry skin and the blurred vision, accepting the roles and duties in taking care of house and grandchildren, selecting the applicable activities and practice according to religious Buddhateachingfor the happiness and meditated life.The highest of the social activities were the good relationship between other elderlies and family members, happy to help social activities as of their capacity, and being happy to help other people who have problems.

Keywords: self-care, valuable living, elderly, Thai

Procedia PDF Downloads 284
337 Addressing Sustainable Development Goals in Palestine: Conflict, Sustainability, and Human Rights

Authors: Nowfiya Humayoon

Abstract:

The Sustainable Development Goals were launched by the UNO in 2015 as a global initiative aimed at eradicating poverty, safeguarding the environment, and promoting peace and prosperity with the target year of 2030. SDGs are vital for achieving global peace, prosperity, and sustainability. Like all nations of the world, these goals are crucial to Palestine but challenging due to the ongoing crisis. Effective action toward achieving each Sustainable Development Goals (SDGs) in Palestine has been severely challenged due to political instability, limited access to resources, International Aid Constraints, Economic blockade, etc., right from the beginning. In the context of the ongoing conflict, there are severe violations of international humanitarian law, which include targeting civilians, using excessive force, and blocking humanitarian aid, which has led to significant civilian casualties, sufferings, and deaths. Therefore, addressing the Sustainable Development Goals is imperative in ensuring human rights, combating violations and fostering sustainability. Methodology: The study adopts a historical, analytical and quantitative approach to evaluate the impact of the ongoing conflict on SDGs in Palestine, with a focus on sustainability and human rights. It examines historical documents, reports of international organizations and regional organizations, recent journal and newspaper articles, and other relevant literature to trace the evolution and the on-ground realities of the conflict and its effects. Quantitative data are collected by analyzing statistical reports from government agencies, non-governmental organizations (NGOs) and international bodies. Databases from World Bank, United Nations and World Health Organizations are utilized. Various health and economic indicators on mortality rates, infant mortality rates and income levels are also gathered. Major Findings: The study reveals profound challenges in achieving the Sustainable Development Goals (SDGs) in Palestine, which include economic blockades and restricted access to resources that have left a substantial portion of the population living below the poverty line, overburdened healthcare facilities struggling to cope with the demands, shortages of medical supplies, disrupted educational systems, with many schools destroyed or repurposed, and children facing significant barriers to accessing quality education, damaged infrastructure, restricted access to clean water and sanitation services and limited access to reliable energy sources . Conclusion: The ongoing crisis in Palestine has drastically affected progress towards the Sustainable Development Goals (SDGs), causing innumerable crises. Violations of international humanitarian law have caused substantial suffering and loss of life. Immediate and coordinated global action and efforts are crucial in addressing these challenges in order to uphold humanitarian values and promote sustainable development in the region.

Keywords: genocide, human rights, occupation, sustainable development goals

Procedia PDF Downloads 9
336 Corporate Governance Development in Mongolia: The Role of Professional Accountants

Authors: Ernest Nweke

Abstract:

The work of Professional Accountants and Corporate governance are synonymous and cannot be divorced from each other. Organizations, profit and non-profit alike cannot implement sound corporate practices without inputs from Professional Accountants. In today’s dynamic corporate world, good corporate governance practice is a sine qua non. More so, following the corporate failures of the past decades like Enron and WorldCom, governments around the world, including Mongolia are becoming more proactive in ensuring sound corporate governance mechanisms. In the past fifteen years, the Mongolian government has taken several measures to establish and strengthen internal corporate governance structures in firms. This paper highlights the role of professional accountants and auditors play in ensuring that good corporate governance mechanisms are entrenched in listed companies in Mongolia. Both primary and secondary data are utilized in this research. In collection of primary data, Delphi method was used, securing responses from only knowledgeable senior employees, top managers, and some CEOs. Using this method, a total of 107 top-level company employees and executives randomly selected from 22 companies were surveyed; maximum of 5 and minimum of 4 from each company. These companies cut across several sectors. It was concluded that Professional Accountants play key roles in setting and maintaining firm governance. They do this by ensuring full compliance with all the requirements of good and sound corporate governance, establishing reporting, monitoring and evaluating standards, assisting in the setting up of proper controls, efficient and effective audit systems, sound fraud risk management and putting in place an overall vision for the enterprise. Companies with effective corporate governance mechanisms are usually strong and fraud-resilient. It was also discovered that companies with big 4 audit firms tend to have better governance structures in Mongolia.

Keywords: accountants, corporate disclosure, corporate failure, corporate governance

Procedia PDF Downloads 277
335 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort

Procedia PDF Downloads 229
334 A Comparative Study on South-East Asian Leading Container Ports: Jawaharlal Nehru Port Trust, Chennai, Singapore, Dubai, and Colombo Ports

Authors: Jonardan Koner, Avinash Purandare

Abstract:

In today’s globalized world international business is a very key area for the country's growth. Some of the strategic areas for holding up a country’s international business to grow are in the areas of connecting Ports, Road Network, and Rail Network. India’s International Business is booming both in Exports as well as Imports. Ports play a very central part in the growth of international trade and ensuring competitive ports is of critical importance. India has a long coastline which is a big asset for the country as it has given the opportunity for development of a large number of major and minor ports which will contribute to the maritime trades’ development. The National Economic Development of India requires a well-functioning seaport system. To know the comparative strength of Indian ports over South-east Asian similar ports, the study is considering the objectives of (I) to identify the key parameters of an international mega container port, (II) to compare the five selected container ports (JNPT, Chennai, Singapore, Dubai, and Colombo Ports) according to user of the ports and iii) to measure the growth of selected five container ports’ throughput over time and their comparison. The study is based on both primary and secondary databases. The linear time trend analysis is done to show the trend in quantum of exports, imports and total goods/services handled by individual ports over the years. The comparative trend analysis is done for the selected five ports of cargo traffic handled in terms of Tonnage (weight) and number of containers (TEU’s). The comparative trend analysis is done between containerized and non-containerized cargo traffic in the five selected five ports. The primary data analysis is done comprising of comparative analysis of factor ratings through bar diagrams, statistical inference of factor ratings for the selected five ports, consolidated comparative line charts of factor rating for the selected five ports, consolidated comparative bar charts of factor ratings of the selected five ports and the distribution of ratings (frequency terms). The linear regression model is used to forecast the container capacities required for JNPT Port and Chennai Port by the year 2030. Multiple regression analysis is carried out to measure the impact of selected 34 explanatory variables on the ‘Overall Performance of the Port’ for each of the selected five ports. The research outcome is of high significance to the stakeholders of Indian container handling ports. Indian container port of JNPT and Chennai are benchmarked against international ports such as Singapore, Dubai, and Colombo Ports which are the competing ports in the neighbouring region. The study has analysed the feedback ratings for the selected 35 factors regarding physical infrastructure and services rendered to the port users. This feedback would provide valuable data for carrying out improvements in the facilities provided to the port users. These installations would help the ports’ users to carry out their work in more efficient manner.

Keywords: throughput, twenty equivalent units, TEUs, cargo traffic, shipping lines, freight forwarders

Procedia PDF Downloads 130
333 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong

Authors: Cynthia Sau Chun Yip, Richard Fielding

Abstract:

High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.

Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption

Procedia PDF Downloads 310
332 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning

Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev

Abstract:

Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030.

Keywords: gas hydrate, gas storage, promotor, associated petroleum gas

Procedia PDF Downloads 69
331 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 119
330 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification

Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine

Abstract:

Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.

Keywords: convolution, feature extraction, image analysis, validation, precision agriculture

Procedia PDF Downloads 313
329 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 147