Search results for: Grid computing
269 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chaos, lambda diode, strange attractor, nonlinear system
Procedia PDF Downloads 89268 Structural Analysis and Modelling in an Evolving Iron Ore Operation
Authors: Sameh Shahin, Nannang Arrys
Abstract:
Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation
Procedia PDF Downloads 49267 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys
Procedia PDF Downloads 144266 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait
Authors: Badriya Almutairi, Ashraf El-Hamalawi
Abstract:
Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy
Procedia PDF Downloads 305265 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications
Authors: Dejenie Birile Gemeda, Wilhelm Stork
Abstract:
The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines
Procedia PDF Downloads 145264 Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling
Authors: Masoud Safdari, Jacob Fish
Abstract:
Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions.Keywords: atomistic, continuum, coupling, multiscale
Procedia PDF Downloads 177263 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy
Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa
Abstract:
Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator
Procedia PDF Downloads 192262 Microwave Single Photon Source Using Landau-Zener Transitions
Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri
Abstract:
As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing
Procedia PDF Downloads 101261 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 363260 Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm
Authors: Belgherbi Aicha, Bessaid Abdelhafid
Abstract:
In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%.Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm
Procedia PDF Downloads 325259 Energy Storage Modelling for Power System Reliability and Environmental Compliance
Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari
Abstract:
Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation
Procedia PDF Downloads 133258 Study and Simulation of a Dynamic System Using Digital Twin
Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli
Abstract:
Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models
Procedia PDF Downloads 151257 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 43256 Optimization of Maintenance of PV Module Arrays Based on Asset Management Strategies: Case of Study
Authors: L. Alejandro Cárdenas, Fernando Herrera, David Nova, Juan Ballesteros
Abstract:
This paper presents a methodology to optimize the maintenance of grid-connected photovoltaic systems, considering the cleaning and module replacement periods based on an asset management strategy. The methodology is based on the analysis of the energy production of the PV plant, the energy feed-in tariff, and the cost of cleaning and replacement of the PV modules, with the overall revenue received being the optimization variable. The methodology is evaluated as a case study of a 5.6 kWp solar PV plant located on the Bogotá campus of the Universidad Nacional de Colombia. The asset management strategy implemented consists of assessing the PV modules through visual inspection, energy performance analysis, pollution, and degradation. Within the visual inspection of the plant, the general condition of the modules and the structure is assessed, identifying dust deposition, visible fractures, and water accumulation on the bottom. The energy performance analysis is performed with the energy production reported by the monitoring systems and compared with the values estimated in the simulation. The pollution analysis is performed using the soiling rate due to dust accumulation, which can be modelled by a black box with an exponential function dependent on historical pollution values. The pollution rate is calculated with data collected from the energy generated during two years in a photovoltaic plant on the campus of the National University of Colombia. Additionally, the alternative of assessing the temperature degradation of the PV modules is evaluated by estimating the cell temperature with parameters such as ambient temperature and wind speed. The medium-term energy decrease of the PV modules is assessed with the asset management strategy by calculating the health index to determine the replacement period of the modules due to degradation. This study proposes a tool for decision making related to the maintenance of photovoltaic systems. The above, projecting the increase in the installation of solar photovoltaic systems in power systems associated with the commitments made in the Paris Agreement for the reduction of CO2 emissions. In the Colombian context, it is estimated that by 2030, 12% of the installed power capacity will be solar PV.Keywords: asset management, PV module, optimization, maintenance
Procedia PDF Downloads 54255 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example
Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang
Abstract:
Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.Keywords: cancer, visualization, database, functional annotation
Procedia PDF Downloads 619254 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time
Procedia PDF Downloads 282253 ChaQra: A Cellular Unit of the Indian Quantum Network
Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh
Abstract:
Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.Keywords: quantum network, quantum key distribution, quantum security, quantum information
Procedia PDF Downloads 58252 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics
Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich
Abstract:
Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes
Procedia PDF Downloads 75251 Development of Three-Dimensional Groundwater Model for Al-Corridor Well Field, Amman–Zarqa Basin
Authors: Moayyad Shawaqfah, Ibtehal Alqdah, Amjad Adaileh
Abstract:
Coridoor area (400 km2) lies to the north – east of Amman (60 km). It lies between 285-305 E longitude and 165-185 N latitude (according to Palestine Grid). It been subjected to exploitation of groundwater from new eleven wells since the 1999 with a total discharge of 11 MCM in addition to the previous discharge rate from the well field 14.7 MCM. Consequently, the aquifer balance is disturbed and a major decline in water level. Therefore, suitable groundwater resources management is required to overcome the problems of over pumping and its effect on groundwater quality. Three–dimensional groundwater flow model Processing Modeflow for Windows Pro (PMWIN PRO, 2003) has been used in order to calculate the groundwater budget, aquifer characteristics, and to predict the aquifer response under different stresses for the next 20 years (2035). The model was calibrated for steady state conditions by trial and error calibration. The calibration was performed by matching observed and calculated initial heads for year 2001. Drawdown data for period 2001-2010 were used to calibrate transient model by matching calculated with observed one, after that, the transient model was validated by using the drawdown data for the period 2011-2014. The hydraulic conductivities of the Basalt- A7/B2 aquifer System are ranging between 1.0 and 8.0 m/day. The low conductivity value was found at the north-west and south-western parts of the study area, the high conductivity value was found at north-western corner of the study area and the average storage coefficient is about 0.025. The water balance for the Basalt and B2/A7 formation at steady state condition with a discrepancy of 0.003%. The major inflows come from Jebal Al Arab through the basalt and through the limestone aquifer (B2/A7 12.28 MCMY aquifer and from excess rainfall is about 0.68 MCM/a. While the major outflows from the Basalt-B2/A7 aquifer system are toward Azraq basin with about 5.03 MCMY and leakage to A1/6 aquitard with 7.89 MCMY. Four scenarios have been performed to predict aquifer system responses under different conditions. Scenario no.2 was found to be the best one which indicates that the reduction the abstraction rates by 50% of current withdrawal rate (25.08 MCMY) to 12.54 MCMY. The maximum drawdowns were decreased to reach about, 7.67 and 8.38m in the years 2025 and 2035 respectively.Keywords: Amman/Zarqa Basin, Jordan, groundwater management, groundwater modeling, modflow
Procedia PDF Downloads 216250 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 164249 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration
Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen
Abstract:
In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.Keywords: administrative law, algorithmic decision-making, decision support, public law
Procedia PDF Downloads 218248 Numerical Studies for Standard Bi-Conjugate Gradient Stabilized Method and the Parallel Variants for Solving Linear Equations
Authors: Kuniyoshi Abe
Abstract:
Bi-conjugate gradient (Bi-CG) is a well-known method for solving linear equations Ax = b, for x, where A is a given n-by-n matrix, and b is a given n-vector. Typically, the dimension of the linear equation is high and the matrix is sparse. A number of hybrid Bi-CG methods such as conjugate gradient squared (CGS), Bi-CG stabilized (Bi-CGSTAB), BiCGStab2, and BiCGstab(l) have been developed to improve the convergence of Bi-CG. Bi-CGSTAB has been most often used for efficiently solving the linear equation, but we have seen the convergence behavior with a long stagnation phase. In such cases, it is important to have Bi-CG coefficients that are as accurate as possible, and the stabilization strategy, which stabilizes the computation of the Bi-CG coefficients, has been proposed. It may avoid stagnation and lead to faster computation. Motivated by a large number of processors in present petascale high-performance computing hardware, the scalability of Krylov subspace methods on parallel computers has recently become increasingly prominent. The main bottleneck for efficient parallelization is the inner products which require a global reduction. The resulting global synchronization phases cause communication overhead on parallel computers. The parallel variants of Krylov subspace methods reducing the number of global communication phases and hiding the communication latency have been proposed. However, the numerical stability, specifically, the convergence speed of the parallel variants of Bi-CGSTAB may become worse than that of the standard Bi-CGSTAB. In this paper, therefore, we compare the convergence speed between the standard Bi-CGSTAB and the parallel variants by numerical experiments and show that the convergence speed of the standard Bi-CGSTAB is faster than the parallel variants. Moreover, we propose the stabilization strategy for the parallel variants.Keywords: bi-conjugate gradient stabilized method, convergence speed, Krylov subspace methods, linear equations, parallel variant
Procedia PDF Downloads 165247 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity
Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz
Abstract:
The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance
Procedia PDF Downloads 110246 Comparison of Blockchain Ecosystem for Identity Management
Authors: K. S. Suganya, R. Nedunchezhian
Abstract:
In recent years, blockchain technology has been found to be the most significant discovery in this digital era, after the discovery of the Internet and Cloud Computing. Blockchain is a simple, distributed public ledger that contains all the user’s transaction details in a block. The global copy of the block is then shared among all its peer-peer network users after validation by the Blockchain miners. Once a block is validated and accepted, it cannot be altered by any users making it a trust-free transaction. It also resolves the problem of double-spending by using traditional cryptographic methods. Since the advent of bitcoin, blockchain has been the backbone for all its transactions. But in recent years, it has found its roots and uses in many fields like Smart Contracts, Smart City management, healthcare, etc. Identity management against digital identity theft has become a major concern among financial and other organizations. To solve this digital identity theft, blockchain technology can be employed with existing identity management systems, which maintain a distributed public ledger containing details of an individual’s identity containing information such as Digital birth certificates, Citizenship number, Bank details, voter details, driving license in the form of blocks verified on the blockchain becomes time-stamped, unforgeable and publicly visible for any legitimate users. The main challenge in using blockchain technology to prevent digital identity theft is ensuring the pseudo-anonymity and privacy of the users. This survey paper will exert to study the blockchain concepts, consensus protocols, and various blockchain-based Digital Identity Management systems with their research scope. This paper also discusses the role of Blockchain in COVID-19 pandemic management by self-sovereign identity and supply chain management.Keywords: blockchain, consensus protocols, bitcoin, identity theft, digital identity management, pandemic, COVID-19, self-sovereign identity
Procedia PDF Downloads 131245 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models
Authors: Azadeh Jafari, Robert G. Owens
Abstract:
In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics
Procedia PDF Downloads 362244 Rapid Flood Damage Assessment of Population and Crops Using Remotely Sensed Data
Authors: Urooj Saeed, Sajid Rashid Ahmad, Iqra Khalid, Sahar Mirza, Imtiaz Younas
Abstract:
Pakistan, a flood-prone country, has experienced worst floods in the recent past which have caused extensive damage to the urban and rural areas by loss of lives, damage to infrastructure and agricultural fields. Poor flood management system in the country has projected the risks of damages as the increasing frequency and magnitude of floods are felt as a consequence of climate change; affecting national economy directly or indirectly. To combat the needs of flood emergency, this paper focuses on remotely sensed data based approach for rapid mapping and monitoring of flood extent and its damages so that fast dissemination of information can be done, from local to national level. In this research study, spatial extent of the flooding caused by heavy rains of 2014 has been mapped by using space borne data to assess the crop damages and affected population in sixteen districts of Punjab. For this purpose, moderate resolution imaging spectroradiometer (MODIS) was used to daily mark the flood extent by using Normalised Difference Water Index (NDWI). The highest flood value data was integrated with the LandScan 2014, 1km x 1km grid based population, to calculate the affected population in flood hazard zone. It was estimated that the floods covered an area of 16,870 square kilometers, with 3.0 million population affected. Moreover, to assess the flood damages, Object Based Image Analysis (OBIA) aided with spectral signatures was applied on Landsat image to attain the thematic layers of healthy (0.54 million acre) and damaged crops (0.43 million acre). The study yields that the population of Jhang district (28% of 2.5 million population) was affected the most. Whereas, in terms of crops, Jhang and Muzzafargarh are the ‘highest damaged’ ranked district of floods 2014 in Punjab. This study was completed within 24 hours of the peak flood time, and proves to be an effective methodology for rapid assessment of damages due to flood hazardKeywords: flood hazard, space borne data, object based image analysis, rapid damage assessment
Procedia PDF Downloads 330243 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling
Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng
Abstract:
This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT
Procedia PDF Downloads 87242 3D Dentofacial Surgery Full Planning Procedures
Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.
Abstract:
The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.Keywords: 3D computing, image processing, image registry, image reconstruction
Procedia PDF Downloads 208241 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser
Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua
Abstract:
In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis
Procedia PDF Downloads 385240 Tumour-Associated Tissue Eosinophilia as a Prognosticator in Oral Squamous Cell Carcinoma
Authors: Karen Boaz, C. R. Charan
Abstract:
Background: The infiltration of tumour stroma by eosinophils, Tumor-Associated Tissue Eosinophilia (TATE), is known to modulate the progression of Oral Squamous Cell Carcinoma (OSCC). Eosinophils have direct tumoricidal activity by release of cytotoxic proteins and indirectly they enhance permeability into tumor cells enabling penetration of tumoricidal cytokines. Also, eosinophils may promote tumor angiogenesis by production of several angiogenic factors. Identification of eosinophils in the inflammatory stroma has been proven to be an important prognosticator in cancers of mouth, oesophagus, larynx, pharynx, breast, lung, and intestine. Therefore, the study aimed to correlate TATE with clinical and histopathological variables, and blood eosinophil count to assess the role of TATE as a prognosticator in Oral Squamous Cell Carcinoma (OSCC). Methods: Seventy two biopsy-proven cases of OSCC formed the study cohort. Blood eosinophil counts and TNM stage were obtained from the medical records. Tissue sections (5µm thick) were stained with Haematoxylin and Eosin. The eosinophils were quantified at invasive tumour front (ITF) in 10HPF (40x magnification) with an ocular grid. Bryne’s grading of ITF was also performed. A subset of thirty cases was also assessed for association of TATE with recurrence, involvement of lymph nodes and surgical margins. Results: 1) No statistically significant correlation was found between TATE and TNM stage, blood eosinophil counts and most parameters of Bryne’s grading system. 2) Statistically significant relation of intense degree of TATE was associated with the absence of distant metastasis, increased lympho-plasmacytic response and increased survival (diseasefree and overall) of OSCC patients. 3) In the subset of 30 cases, tissue eosinophil counts were higher in cases with lymph node involvement, decreased survival, without margin involvement and in cases that did not recur. Conclusion: While the role of eosinophils in mediating immune responses seems ambiguous as eosinophils support cell-mediated tumour immunity in early stages while inhibiting the same in advanced stages, TATE may be used as a surrogate marker for determination of prognosis in oral squamous cell carcinoma.Keywords: tumour-associated tissue eosinophilia, oral squamous cell carcinoma, prognosticator, tumoral immunity
Procedia PDF Downloads 250