Search results for: neural control
10691 The Impact of Simulation-based Learning on the Clinical Self-efficacy and Adherence to Infection Control Practices of Nursing Students
Authors: Raeed Alanazi
Abstract:
Introduction: Nursing students have a crucial role to play in the inhibition of infectious diseases and, therefore, must be trained in infection control and prevention modules prior to entering clinical settings. Simulations have been found to have a positive impact on infection control skills and the use of standard precautions. Aim: The purpose of this study was to use the four sources of self-efficacy in explaining the level of clinical self-efficacy and adherence to infection control practices in Saudi nursing students during simulation practice. Method: A cross-sectional design with convenience sampling was used. This study was conducted in all Saudi nursing schools, with a total number of 197 students participated in this study. Three scales were used simulation self- efficacy Scale (SSES), the four sources of self-efficacy scale (SSES), and Compliance with Standard Precautions Scale (CSPS). Multiple linear regression was used to test the use of the four sources of self-efficacy (SSES) in explaining level of clinical self-efficacy and adherence to infection control in nursing students. Results: The vicarious experience subscale (p =.044) was statistically significant. The regression model indicated that for every one unit increase in vicarious experience (observation and reflection in simulation), the participants’ adherence to infection control increased by .13 units (β =.22, t = 2.03, p =.044). In addition, the regression model indicated that for every one unit increase in education level, the participants’ adherence to infection control increased by 1.82 units (beta=.34= 3.64, p <.001). Also, the mastery experience subscale (p <.001) and vicarious experience subscale (p = .020) were shared significant associations with clinical self-efficacy. Conclusion: The findings of this research support the idea that simulation-based learning can be a valuable teaching-learning method to help nursing students develop clinical competence, which is essential in providing quality and safe nursing care.Keywords: simulation-based learning, clinical self-efficacy, infection control, nursing students
Procedia PDF Downloads 7110690 A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator
Authors: Abolfazl Zaraki, Yoshikatsu Hayashi, Harry Thorpe, Vincent Strong, Gisle-Andre Larsen, William Holderbaum
Abstract:
Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application.Keywords: hyper-redundant robots, kinematic analysis, semi-autonomous control, serial manipulators
Procedia PDF Downloads 15710689 Current and Emerging Pharmacological Treatment for Status Epilepticus in Adults
Authors: Mathew Tran, Deepa Patel, Breann Prophete, Irandokht Khaki Najafabadi
Abstract:
Status epilepticus is a neurological disorder requiring emergent control with medical therapy. Based on guideline recommendations for adults with status epilepticus, the first-line treatment is to start a benzodiazepine, as they are quick at seizure control. The second step is to initiate a non-benzodiazepine anti-epileptic drug to prevent refractory seizures. Studies show that the anti-epileptic drugs are approximately equivalent in status epilepticus control once a benzodiazepine has been given. This review provides a brief overview of the management of status epilepticus based on evidence from the literature and evidence-based guidelines.Keywords: neurological disorder, seizure, status epilepticus, benzo diazepines, antiepileptic agents
Procedia PDF Downloads 12010688 A Study on the Effects of Prolactin and Its Abnormalities on Semen Parameters of Male White Rats
Authors: R. Hasan
Abstract:
Male factor infertility due to endocrine disturbances such as abnormalities in prolactin levels are encountered in a significant proportion. This case control study was carried out to determine the effects of prolactin on the male reproductive tract, using 200 male white rats. The rats were maintained as the control group (G1), hypoprolactinaemic group (G2), 3 hyperprolactinaemic groups induced using oral largactil (G3), low dose fluphenazine (G4) and high dose fluphenazine (G5). After 100 days, rats were subjected to serum prolactin (PRL) level measurements and for basic seminal fluid analysis (BSA). The difference between serum PRL concentrations of rats in G2, G3, G4 and G5 as compared to the control group were highly significant by Student’s t-test (p<0.001). There were statistically significant differences in seminal fluid characteristics of rats with induced prolactin abnormalities when compared with those of control group (p value <0.05), effects were more marked as the PRL levels rise.Keywords: male factor infertility, prolactin, seminal fluid analysis, animal studies
Procedia PDF Downloads 28910687 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 21510686 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 31910685 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat
Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh
Abstract:
Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences
Procedia PDF Downloads 42610684 Comparison of Various Control Methods for an Industrial Multiproduct Fractionator
Authors: Merve Aygün Esastürk, Deren Ataç Yılmaz, Görkem Oğur, Emre Özgen Kuzu, Sadık Ödemiş
Abstract:
Hydrocracker plants are one of the most complicated and most profitable units in the refinery process. It takes long chain paraffinic hydrocarbons as feed and turns them into smaller and more valuable products, mainly kerosene and diesel under high pressure with the excess amount of hydrogen. Controlling the product qualities well directly contributes to the unit profit. Control of a plant is mainly based on PID and MPC controllers. Controlling the reaction section is important in terms of reaction severity. However, controlling the fractionation section is more crucial since the end products are separated in fractionation section. In this paper, the importance of well-configured base layer control mechanism, composed of PID controllers, is highlighted. For this purpose, two different base layer control scheme is applied in a hydrocracker fractionator column performances of schemes, which is a direct contribution to better product quality, are compared.Keywords: controller, distillation, configuration selection, hydrocracker, model predictive controller, proportional-integral-derivative controller
Procedia PDF Downloads 43910683 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 9410682 Hansen Solubility Parameter from Surface Measurements
Authors: Neveen AlQasas, Daniel Johnson
Abstract:
Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied filmsKeywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements
Procedia PDF Downloads 9410681 Magnetic Levitation Control: A Comparative Analysis of Two-Position and Tuned PID Methods Using Arduino Microcontrollers
Authors: Charles Anthony S. Santillan, Jude Noel P. Jarina, Patricia Mae A. Cuevas, Julito B. Añora Jr.
Abstract:
The research examines the effectiveness of Two-Position and Tuned PID controllers in magnetic levitation systems. Magnetic levitation, a crucial technology in diverse industries, depends on meticulous control mechanisms for stability and performance. The study seeks to compare these two control strategies to ascertain their efficacy in practical applications. The paper explores the theoretical foundations of the controllers, presents an experimental methodology emphasizing setup and installation, and examines the results about stability, response time, and susceptibility to disturbances. By interpreting and discussing the findings, the research provides valuable perspectives on the practical ramifications of utilizing Two-Position and Tuned PID controllers in magnetic levitation systems. The conclusion encapsulates significant outcomes and proposes avenues for future research, thereby contributing to the progress of control strategies in magnetic levitation technology.Keywords: arduino, comparative analysis, magnetic levitation, tuned PID controller, two-position controller
Procedia PDF Downloads 7110680 The Students' Mathematical Competency and Attitude towards Mathematics Using the Trachtenberg Speed Math System
Authors: Marlone D. Severo
Abstract:
A pre- and post-test quasi-experimental design was used to test the intervention of Trachtenberg Speed Math on the mathematical competency of sixty (60) matched-paired students with a poor performing grade in Mathematics from one of the biggest public national high school at the South of Metro Manila. Both control and experimental group were administered with the Attitude Towards Mathematics Inventory (ATMI) before the pretest were given and both group showed high dislike for Mathematics. Pretest showed a 53 percent accuracy for the control group and 51 percent for the experimental group using a 15-item long multiplication test without any aid of a computing device. The experimental group were taught how to use the Trachtenberg number-keys and techniques in multiplication between October 2014 to March 2015. Post-test showed an improvement in the experimental group with 96 percent accuracy for the control group and a dismal 57 percent for the control group in long-multiplication. Post-test ATMI were administered. The control group showed a great dislike towards Mathematics, while the experimental group showed a positive attitude towards the subject.Keywords: attitude towards mathematics, mathematical competency, number-keys, trachtenberg speed math
Procedia PDF Downloads 36710679 The Contribution of Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain
Authors: Radwa El Shorbagy, Alaa El Din Balbaa, Khaled Ayad, Waleed Reda
Abstract:
Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System Results: Repeated measures MANOVA was used to compare between and within group differences, In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p= 0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.Keywords: ankle sprain, fatigue hip muscles, dynamic balance
Procedia PDF Downloads 30010678 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 710677 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 910676 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 13410675 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks
Procedia PDF Downloads 40110674 Improving the Social Interactions of Students with Conduct Disorder in Dil Betigil Primary School
Authors: Dawit Thomas Lambamo
Abstract:
Conduct disorder has become a major health and social problem; it is the most common psychiatric problem diagnosed among students which affect the academic and social interaction of students. This intervention was conducted in Dil Betigil primary school. After identifying six students with conduct disorder in Dil Betigil primary school, the intervention was conducted using a true experimental research design specifically pretest and posttest control group design. Data from teachers and parents of the students with conduct disorder were collected using adapted conduct disorder scale and semi-structured interview. The independent sample t-test of Pretest results of both experimental and control group indicated that there is no statistically significant difference between experimental and control groups. Intervention is carried out to enhance their social interaction and to decrees aggressive, a serious violation of rules and theft behavior of students in collaboration with teachers and parents. After six intervention weeks the post-test result showed that there was statistically significant difference in aggression and serious violation between the experimental and control groups, but there was no statistically significant mean difference regarding deceitful or theft between the experimental and control group.Keywords: conduct, disorder, social interaction, interaction
Procedia PDF Downloads 31610673 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 11110672 Comparative Study to Evaluate the Efficacy of Control Criterion in Determining Consolidation Scope in the Public Sector
Authors: Batool Zarei
Abstract:
This study aims to answer this question whether control criterion with two elements of power and benefit which is introduced as 'control criterion of consolidation scope' in national and international standards of accounting in public sector (and also private sector) is efficient enough or not. The methodology of this study is comparative and the results of this research are significantly generalizable, due to the given importance to the sample of countries which were studied. Findings of this study states that in spite of pervasive use of control criterion (including 2 elements of power and benefit), criteria for determining the existence of control in public sector accounting standards, are not efficient enough to determine the consolidation scope of whole of government financial statements in a way that meet decision making and accountability needs of managers, policy makers and supervisors; specially parliament. Therefore, the researcher believes that for determining consolidation scope in public sector, in addition to economic view, it is better to pay attention to budgetary, legal and statistical concepts and also to practical and financial risk and define indicators for proving the existence of control (power and benefit) which include accountability relationships (budgetary relation, legal form and nature of activity). these findings also reveals the necessity of passing a comprehensive public financial management (PFM) legislation in order to redefine the characteristics of public sector entities and whole of government financial statements scope and review Statistics organizations and central banks duties for preparing government financial statistics and national accounts in order to achieve sustainable development and resilient economy goals.Keywords: control, consolidation scope, public sector accounting, government financial statistics, resilient economy
Procedia PDF Downloads 25810671 Large-Eddy Simulations for Flow Control
Authors: Reda Mankbadi
Abstract:
There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)
Procedia PDF Downloads 28210670 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 7910669 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 32610668 Trends in Blood Pressure Control and Associated Risk Factors Among US Adults with Hypertension from 2013 to 2020: Insights from NHANES Data
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Controlling blood pressure is critical to reducing the risk of cardiovascular disease. However, BP control rates (systolic BP < 140 mm Hg and diastolic BP < 90 mm Hg) have declined since 2013, warranting further analysis to identify contributing factors and potential interventions. This study investigates the factors associated with the decline in blood pressure (BP) control among U.S. adults with hypertension over the past decade. Data from the U.S. National Health and Nutrition Examination Survey (NHANES) were used to assess BP control trends between 2013 and 2020. The analysis included 18,927 U.S. adults with hypertension aged 18 years and older who completed study interviews and examinations. The dataset, obtained from the cardioStatsUSA and RNHANES R packages, was merged based on survey IDs. Key variables analyzed included demographic factors, lifestyle behaviors, hypertension status, BMI, comorbidities, antihypertensive medication use, and cardiovascular disease history. The prevalence of BP control declined from 78.0% in 2013-2014 to 71.6% in 2017-2020. Non-Hispanic Whites had the highest BP control prevalence (33.6% in 2013-2014), but this declined to 26.5% by 2017-2020. In contrast, BP control among Non-Hispanic Blacks increased slightly. Younger adults (aged 18-44) exhibited better BP control, but control rates declined over time. Obesity prevalence increased, contributing to poorer BP control. Antihypertensive medication use rose from 26.1% to 29.2% across the study period. Lifestyle behaviors, such as smoking and diet, also affected BP control, with nonsmokers and those with better diets showing higher control rates. Key findings indicate significant disparities in blood pressure control across racial/ethnic groups. Non-Hispanic Black participants had consistently higher odds (OR ranging from 1.84 to 2.33) of poor blood pressure control compared to Non-Hispanic Whites, while odds among Non-Hispanic Asians varied by cycle. Younger age groups (18-44 and 45-64) showed significantly lower odds of poor blood pressure control compared to those aged 75+, highlighting better control in younger populations. Men had consistently higher odds of poor control compared to women, though this disparity slightly decreased in 2017-2020. Medical comorbidities such as diabetes and chronic kidney disease were associated with significantly higher odds of poor blood pressure control across all cycles. Participants with chronic kidney disease had particularly elevated odds (OR=5.54 in 2015-2016), underscoring the challenge of managing hypertension in these populations. Antihypertensive medication use was also linked with higher odds of poor control, suggesting potential difficulties in achieving target blood pressure despite treatment. Lifestyle factors such as alcohol consumption and physical activity showed no consistent association with blood pressure control. However, dietary quality appeared protective, with those reporting an excellent diet showing lower odds (OR=0.64) of poor control in the overall sample. Increased BMI was associated with higher odds of poor blood pressure control, particularly in the 30-35 and 35+ BMI categories during 2015-2016. The study highlights a significant decline in BP control among U.S. adults with hypertension, particularly among certain demographic groups and those with increasing obesity rates. Lifestyle behaviors, antihypertensive medication use, and socioeconomic factors all played a role in these trends.Keywords: diabetes, blood pressure, obesity, logistic regression, odd ratio
Procedia PDF Downloads 910667 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 10410666 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception
Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu
Abstract:
Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish
Procedia PDF Downloads 14610665 Parkinson's Disease and Musculoskeletal Problems
Authors: Ozge Yilmaz Kusbeci, Ipek Inci
Abstract:
Aim: Musculoskeletal problems are very common in Parkinson’s disease (PD). They affect quality of life and cause disabilities. However they are under-evaluated, and under-treated. The aim of this study is to evaluate the prevalence and clinical features of musculoskeletal problems in patients with Parkinson disease (PD) compared to controls. Methods: 50 PD patients and 50 age and sex matched controls were interviewed by physicians about their musculoskeletal problems. Results: The prevalence of musculoskeletal problems was significantly higher in the PD group than in the control group (p < 0.05). Commonly involved body sites were the shoulder, low back, and knee. The shoulder and low back was more frequently involved in the PD group than in the control group. However, the knee was similarly involved in both groups. Among the past diagnoses associated with musculoskeletal problems, frozen shoulder, low back pain and osteoporosis more common in the PD group than in the control group (p < 0.05). Furthermore, musculoskeletal problems in the PD group tended to receive less treatment than that of the control group. Conclusion: Musculoskeletal problems were more common in the PD group than in the controls. Therefore assessment and treatment of musculoskeletal problems could improve quality of life in PD patients.Keywords: parkinson disease, musculoskeletal problems, quality of life, PD disease
Procedia PDF Downloads 39610664 Do Immune Organ Weights Indicate Immunomodulation of Polyunsaturated Fatty Acids?
Authors: H. Al-Khalifa, A. Al-Nasser
Abstract:
The main immune organs in poultry are the thymus, spleen and bursa of Fabricius. During an immune response, mature lymphocytes and other immune cells interact with antigens in these tissues. Consequently, the mass of these organs can in some cases indicate immune status. The objective of the current study was to investigate the effect of feeding flaxseed on immune tissue weights. Cobb 500 broiler chickens were fed flaxseed at 15%, the control diet did not contain any flaxseed. Results showed that dietary supplementation with flaxseed did not affect the weights of the spleens of broiler chickens. However, it significantly lowered bursa weights (p<0.01), compared to the control diet. In addition, the bursae were thinner in appearance compared with bursii from chickens fed the control diets.Keywords: bursa of fabricius, flaxseed, spleen, thymus
Procedia PDF Downloads 44410663 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model
Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo
Abstract:
In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.Keywords: climatic change, artificial neural networks, dorado fish, CPUE
Procedia PDF Downloads 24310662 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method
Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene
Abstract:
This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems
Procedia PDF Downloads 255