Search results for: traditional learning approach
20792 New Knowledge Co-Creation in Mobile Learning: A Classroom Action Research with Multiple Case Studies Using Mobile Instant Messaging
Authors: Genevieve Lim, Arthur Shelley, Dongcheol Heo
Abstract:
Abstract—Mobile technologies can enhance the learning process as it enables social engagement around concepts beyond the classroom and the curriculum. Early results in this ongoing research is showing that when learning interventions are designed specifically to generate new insights, mobile devices support regulated learning and encourage learners to collaborate, socialize and co-create new knowledge. As students navigate across the space and time boundaries, the fundamental social nature of learning transforms into mobile computer supported collaborative learning (mCSCL). The metacognitive interaction in mCSCL via mobile applications reflects the regulation of learning among the students. These metacognitive experiences whether self-, co- or shared-regulated are significant to the learning outcomes. Despite some insightful empirical studies, there has not yet been significant research that investigates the actual practice and processes of the new knowledge co-creation. This leads to question as to whether mobile learning provides a new channel to leverage learning? Alternatively, does mobile interaction create new types of learning experiences and how do these experiences co-create new knowledge. The purpose of this research is to explore these questions and seek evidence to support one or the other. This paper addresses these questions from the students’ perspective to understand how students interact when constructing knowledge in mCSCL and how students’ self-regulated learning (SRL) strategies support the co-creation of new knowledge in mCSCL. A pilot study has been conducted among international undergraduates to understand students’ perspective of mobile learning and concurrently develops a definition in an appropriate context. Using classroom action research (CAR) with multiple case studies, this study is being carried out in a private university in Thailand to narrow the research gaps in mCSCL and SRL. The findings will allow teachers to see the importance of social interaction for meaningful student engagement and envisage learning outcomes from a knowledge management perspective and what role mobile devices can play in these. The findings will signify important indicators for academics to rethink what is to be learned and how it should be learned. Ultimately, the study will bring new light into the co-creation of new knowledge in a social interactive learning environment and challenges teachers to embrace the 21st century of learning with mobile technologies to deepen and extend learning opportunities.Keywords: mobile computer supported collaborative learning, mobile instant messaging, mobile learning, new knowledge co-creation, self-regulated learning
Procedia PDF Downloads 23320791 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control
Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy
Abstract:
In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping
Procedia PDF Downloads 50820790 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 9720789 The Relevance of Shared Cultural Leadership in the Survival of the Language and of the Francophone Culture in a Minority Language Environment
Authors: Lyne Chantal Boudreau, Claudine Auger, Arline Laforest
Abstract:
As an English-speaking country, Canada faces challenges in French-language education. During both editions of a provincial congress on education planned and conducted under shared cultural leadership, three organizers created a Francophone space where, for the first time in the province of New Brunswick (the only officially bilingual province in Canada), a group of stakeholders from the school, post-secondary and community sectors have succeeded in contributing to reflections on specific topics by sharing winning practices to meet the challenges of learning in a minority Francophone environment. Shared cultural leadership is a hybrid between theories of leadership styles in minority communities and theories of shared leadership. Through shared cultural leadership, the goal is simply to guide leadership and to set up all minority leaderships in minority context through shared leadership. This leadership style requires leaders to transition from a hierarchical to a horizontal approach, that is, to an approach where each individual is at the same level. In this exploratory research, it has been demonstrated that shared leadership exercised under the T-learning model best fosters the mobilization of all partners in advancing in-depth knowledge in a particular field while simultaneously allowing learning of the elements related to the domain in question. This session will present how it is possible to mobilize the whole community through leaders who continually develop their knowledge and skills in their specific field but also in related fields. Leaders in this style of management associated to shared cultural leadership acquire the ability to consider solutions to problems from a holistic perspective and to develop a collective power derived from the leadership of each and everyone in a space where all are rallied to promote the ultimate advancement of society.Keywords: education, minority context, shared leadership, t-leaning
Procedia PDF Downloads 25020788 Process Monitoring Based on Parameterless Self-Organizing Map
Authors: Young Jae Choung, Seoung Bum Kim
Abstract:
Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property
Procedia PDF Downloads 27820787 STEM Curriculum Development Using Robotics with K-12 Students in Brazil
Authors: Flavio Campos
Abstract:
This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology
Procedia PDF Downloads 34220786 Integrating Technology into Foreign Language Teaching: A Closer Look at Arabic Language Instruction at the Australian National University
Authors: Kinda Alsamara
Abstract:
Foreign language education is a complex endeavor that often presents educators with a range of challenges and difficulties. This study shed light on the specific challenges encountered in the context of teaching Arabic as a foreign language at the Australian National University (ANU). Drawing from real-world experiences and insights, we explore the multifaceted nature of these challenges and discuss strategies that educators have employed to address them. The challenges in teaching the Arabic language encompass various dimensions, including linguistic intricacies, cultural nuances, and diverse learner backgrounds. The complex Arabic script, grammatical structures, and pronunciation patterns pose unique obstacles for learners. Moreover, the cultural context embedded within the language demands a nuanced understanding of cultural norms and practices. The diverse backgrounds of learners further contribute to the challenge of tailoring instruction to meet individual needs and proficiency levels. This study also underscores the importance of technology in tackling these challenges. Technological tools and platforms offer innovative solutions to enhance language acquisition and engagement. Online resources, interactive applications, and multimedia content can provide learners with immersive experiences, aiding in overcoming barriers posed by traditional teaching methods. Furthermore, this study addresses the role of instructors in mitigating challenges. Educators often find themselves adapting teaching approaches to accommodate different learning styles, abilities, and motivations. Establishing a supportive learning environment and fostering a sense of community can contribute significantly to overcoming challenges related to learner diversity. In conclusion, this study provides a comprehensive overview of the challenges faced in teaching Arabic as a foreign language at ANU. By recognizing these challenges and embracing technological and pedagogical advancements, educators can create more effective and engaging learning experiences for students pursuing Arabic language proficiency.Keywords: Arabic, Arabic online, blended learning, teaching and learning, Arabic language, educational aids, technology
Procedia PDF Downloads 6420785 Barriers and Opportunities in Apprenticeship Training: How to Complete a Vocational Upper Secondary Qualification with Intermediate Finnish Language Skills
Authors: Inkeri Jaaskelainen
Abstract:
The aim of this study is to shed light on what is it like to study in apprenticeship training using intermediate (or even lower level) Finnish. The aim is to find out and describe these students' experiences and feelings while acquiring a profession in Finnish as it is important to understand how immigrant background adult learners learn and how their needs could be better taken into account. Many students choose apprenticeships and start vocational training while their language skills in Finnish are still very weak. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances, and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other, and so are their ways to learn. Both duties at work and school assignments require reasonably good general language skills, and, especially at work, language skills are also a safety issue. The empirical target of this study is a group of students with an immigrant background who studied in various fields with intensive L2 support in 2016–2018 and who by now have completed a vocational upper secondary qualification. The interview material for this narrative study was collected from those who completed apprenticeship training in 2019–2020. The data collection methods used are a structured thematic interview, a questionnaire, and observational data. Interviewees with an immigrant background have an inconsistent cultural and educational background - some have completed an academic degree in their country of origin while others have learned to read and write only in Finland. The analysis of the material utilizes thematic analysis, which is used to examine learning and related experiences. Learning a language at work is very different from traditional classroom teaching. With evolving language skills, at an intermediate level at best, rushing and stressing makes it even more difficult to understand and increases the fear of failure. Constant noise, rapidly changing situations, and uncertainty undermine the learning and well-being of apprentices. According to preliminary results, apprenticeship training is well suited to the needs of an adult immigrant student. In apprenticeship training, students need a lot of support for learning and understanding a new communication and working culture. Stress can result in, e.g., fatigue, frustration, and difficulties in remembering and understanding. Apprenticeship training can be seen as a good path to working life. However, L2 support is a very important part of apprenticeship training, and it indeed helps students to believe that one day they will graduate and even get employed in their new country.Keywords: apprenticeship training, vocational basic degree, Finnish learning, wee-being
Procedia PDF Downloads 13420784 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half
Authors: Said Fares, Mary Fares
Abstract:
It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.Keywords: failure rate, interactive learning, student engagement, CS1
Procedia PDF Downloads 31220783 Gardening as a Contextual Scaffold for Learning: Connecting Community Wisdom for Science and Health Learning through Participatory Action Research
Authors: Kamal Prasad Acharya
Abstract:
The related literature suggests that teaching and learning science at the basic level community schools in Nepal is based on book recitation. Consequently, the achievement levels and the understanding of basic science concepts is much below the policy expectations. In this context, this study intended to gain perception in the implementation practices of school gardens ‘One Garden One School’ for science learning and to meet the target of sustainable development goals that connects community wisdom regarding school gardening activities (SGAs) for science learning. This Participatory Action Research (PAR) study was done at the action school located in Province 3, Chitwan of Federal Nepal, supported under the NORHED/Rupantaran project. The purpose of the study was to connect the community wisdom related to gardening activities as contextual scaffolds for science learning. For this, in-depth interviews and focus group discussions were applied to collect data which were analyzed using a thematic analysis. Basic level students, science teachers, and parents reported having wonderful experiences such as active and meaningful engagement in school gardening activities for science learning as well as science teachers’ motivation in activity-based science learning. Overall, teachers, students, and parents reported that the school gardening activities have been found to have had positive effects on students’ science learning as they develop basic scientific concepts by connecting community wisdom as a contextual scaffold. It is recommended that the establishment of a school garden is important for science learning in community schools throughout Nepal.Keywords: contextual scaffold, community wisdom, science and health learning, school garden
Procedia PDF Downloads 17920782 The Impact of Using Microlearning to Enhance Students' Programming Skills and Learning Motivation
Authors: Ali Alqarni
Abstract:
This study aims to explore the impact of microlearning on the development of the programming skills as well as on the motivation for learning of first-year high schoolers in Jeddah. The sample consists of 78 students, distributed as 40 students in the control group, and 38 students in the treatment group. The quasi-experimental method, which is a type of quantitative method, was used in this study. In addition to the technological tools used to create and deliver the digital content, the study utilized two tools to collect the data: first, an observation card containing a list of programming skills, and second, a tool to measure the student's motivation for learning. The findings indicate that microlearning positively impacts programming skills and learning motivation for students. The study, then, recommends implementing and expanding the use of microlearning in educational contexts both in the general education level and the higher education level.Keywords: educational technology, teaching strategies, online learning, microlearning
Procedia PDF Downloads 13220781 Pibid and Experimentation: A High School Case Study
Authors: Chahad P. Alexandre
Abstract:
PIBID-Institutional Program of Scholarships to Encourage Teaching - is a Brazilian government program that counts today with 48.000 students. It's goal is to motivate the students to stay in the teaching undergraduate programs and to help fill the gap of 100.000 teachers that are needed today in the under graduated schools. The major lack of teachers today is in physics, chemistry, mathematics, and biology. At IFSP-Itapetininga we formatted our physics PIBID based on practical activities. Our students are divided in two São Paulo state government high schools in the same city. The project proposes class activities based on experimentation, observation and understanding of physical phenomena. The didactical experiments are always in relation with the content that the teacher is working, he is the supervisor of the program in the school. Always before an experiment is proposed a little questionnaire to learn about the students preconceptions and one is filled latter to evaluate if now concepts have been created. This procedure is made in order to compare their previous knowledge and how it changed after the experiment is developed. The primary goal of our project is to make the Physics class more attractive to the students and to develop in high school students the interest in learning physics and to show the relation of Physics to the day by day and to the technological world. The objective of the experimental activities is to facilitate the understanding of the concepts that are worked on classes because under experimentation the PIBID scholarship student stimulate the curiosity of the high school student and with this he can develop the capacity to understand and identify the physical phenomena with concrete examples. Knowing how to identify this phenomena and where they are present at the high school student life makes the learning process more significant and pleasant. This proposal make achievable to the students to practice science, to appropriate of complex, in the traditional classes, concepts and overcoming the common preconception that physics is something distant and that is present only on books. This preconception is extremely harmful in the process of scientific knowledge construction. This kind of learning – through experimentation – make the students not only accumulate knowledge but also appropriate it, also to appropriate experimental procedures and even the space that is provided by the school. The PIBID scholarship students, as future teachers also have the opportunity to try experimentation classes, to intervene in the classes and to have contact with their future career. This opportunity allows the students to make important reflection about the practices realized and consequently about the learning methods. Due to this project, we found out that the high school students stay more time focused in the experiment compared to the traditional explanation teachers´ class. As a result in a class, as a participative activity, the students got more involved and participative. We also found out that the physics under graduated students drop out percentage is smaller in our Institute than before the PIBID program started.Keywords: innovation, projects, PIBID, physics, pre-service teacher experiences
Procedia PDF Downloads 34320780 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 16220779 Effect of Three Resistance Training Methods on Performance-Related Variables of Powerlifters
Authors: K. Shyamnath, K. Suresh Kutty
Abstract:
The purpose of the study was to find out the effect of three resistance training methods on performance-related variables of powerlifters. A total of forty male students (N=40) who had participated in Kannur University powerlifting championship were selected as subjects. The age group of the subjects ranged from 18 years old to 25 years old. The selected subjects were equally divided into four groups (n=10) of three experimental groups and a control group. The experimental Group I underwent traditional resistance training (TRTG), Group II underwent combined traditional resistance training and plyometrics (TRTPG), and Group III underwent combined traditional resistance training and resistance training with high rhythm (TRTHRG). Group IV acted as the control group (CG) receiving no training during the experimental period. The duration of the experimental period was sixteen weeks, five days per week. Powerlifting performance was assessed by the 1RM test in the squat, bench press and deadlift. Performance-related variables assessed were chest girth, arm girth, forearm girth, thigh girth, and calf girth. Pre-test and post-test were conducted a day before and two days after the experimental period on all groups. Analysis of covariance (ANCOVA) was applied to analyze the significant difference. The 0.05 level of confidence was fixed as the level of significance to test the F ratio obtained by the analysis of covariance. The result indicates that there is a significant effect of all the selected resistance training methods on the performance and selected performance-related variables of powerlifters. Combined traditional resistance training and plyometrics and combined traditional resistance training and resistance training with high rhythm proved better than the traditional resistance training in improving performance and selected performance-related variables of powerlifters. There was no significant difference between combined traditional resistance training and plyometrics and combined traditional resistance training and resistance training with high rhythm in improving performance and selected performance-related variables of powerlifters.Keywords: girth, plyometrics, powerlifting, resistance training
Procedia PDF Downloads 49120778 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network
Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour
Abstract:
Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network
Procedia PDF Downloads 17120777 A Framework for Rating Synchronous Video E-Learning Applications
Authors: Alex Vakaloudis, Juan Manuel Escano-Gonzalez
Abstract:
Setting up a system to broadcast live lectures on the web is a procedure which on the surface does not require any serious technical skills mainly due to the facilities provided by popular learning management systems and their plugins. Nevertheless, producing a system of outstanding quality is a multidisciplinary and by no means a straightforward task. This complicatedness may be responsible for the delivery of an overall poor experience to the learners, and it calls for a formal rating framework that takes into account the diverse aspects of an architecture for synchronous video e-learning systems. We discuss the specifications of such a framework which at its final stage employs fuzzy logic technique to transform from qualitative to quantitative results.Keywords: synchronous video, fuzzy logic, rating framework, e-learning
Procedia PDF Downloads 56120776 Game On: Unlocking the Educational Potential of Games and Entertainment in Online Learning
Authors: Colleen Cleveland, W. Adam Baldowski
Abstract:
In the dynamic realm of online education, the integration of games and entertainment has emerged as a powerful strategy to captivate learners, drive active participation, and cultivate meaningful learning experiences. This abstract presents an overview of the upcoming conference, "Game On," dedicated to exploring the transformative impact of gamification, interactive simulations, and multimedia content in the digital learning landscape. Introduction: The conference aims to blur the traditional boundaries between education and entertainment, inspiring learners of diverse ages and backgrounds to actively engage in their online learning journeys. By leveraging the captivating elements of games and entertainment, educators can enhance motivation, retention, and deep understanding among virtual classroom participants. Conference Highlights: Commencing with an exploration of theoretical foundations drawing from educational psychology, instructional design, and the latest pedagogical research, participants will gain valuable insights into the ways gamified elements elevate the quality of online education. Attendees can expect interactive sessions, workshops, and case studies showcasing best practices and innovative strategies, including game-based assessments and virtual reality simulations. Inclusivity and Diversity: The conference places a strong emphasis on inclusivity, accessibility, and diversity in the integration of games and entertainment for educational purposes. Discussions will revolve around accommodating diverse learning styles, overcoming potential challenges, and ensuring equitable access to engaging educational content for all learners. Educational Transformation: Educators, instructional designers, and e-learning professionals attending "Game On" will acquire practical techniques to elevate the quality of their online courses. The conference promises a stimulating and informative exploration of blending education with entertainment, unlocking the untapped potential of games and entertainment in online education. Conclusion: "Game On" invites participants to embark on a journey that transforms online education by harnessing the power of entertainment. This event promises to be a cornerstone in the evolution of virtual learning, offering valuable insights for those seeking to create a more engaging and effective online educational experience. Join us as we explore new horizons, pushing the boundaries of online education through the fusion of games and entertainment.Keywords: online education, games, entertainment, psychology, therapy, pop culture
Procedia PDF Downloads 5620775 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes
Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari
Abstract:
Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.Keywords: emotion, learning process, multi-agent simulation, serious games
Procedia PDF Downloads 40120774 Penetrating Neck Injury: No Zone Approach
Authors: Abhishek Sharma, Amit Gupta, Manish Singhal
Abstract:
Background: The management of patients with penetrating neck injuries in the prehospital setting and in the emergency department has evolved with regard to the use of multidetector computed tomographic (MDCT) imaging. Hence, there is a shift in the management of neck injuries from mandatory exploration in certain anatomic areas to more conservative approach using imaging and so-called “no zone approach”. Objective: To study the no zone approach in the management of penetrating neck injury using routine imaging in all stable patients. Methods: 137 patients with penetrating neck injury attending emergency department of level 1 trauma centre at AIIMS between 2008–2014 were retrospectively analysed. All hemodynamically stable patients were evaluated using CT scanning. Results: Stab injury is most common (55.91%) mode of pni in civilian population followed by gunshot(18.33%). The majority of patients could be managed with imaging and close observation. 39 patients (28.46%) required operative intervention. The most common indication for operative intervention was vascular followed by airway injury manifesting as hemodynamic destabilisation.There was no statistical difference between the zonal distribution of injuries in patients managed conservatively and those taken to OR. Conclusions: Study shows that patients with penetrating neck trauma who are haemodynamically stable and exhibit no “hard signs” of vascular injury or airway injury may be evaluated initially by MDCT imaging even when platysma violation is present. “No Zone” policy may be superior to traditional zone wise management.Keywords: penetrating neck injury, zone approach, CT scanning, multidetector computed tomographic (MDCT)
Procedia PDF Downloads 40620773 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 1320772 Quantifying the Aspect of ‘Imagining’ in the Map of Dialogical inquiry
Authors: Chua Si Wen Alicia, Marcus Goh Tian Xi, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee
Abstract:
In a world full of rapid changes, people often need a set of skills to help them navigate an ever-changing workscape. These skills, often known as “future-oriented skills,” include learning to learn, critical thinking, understanding multiple perspectives, and knowledge creation. Future-oriented skills are typically assumed to be domain-general, applicable to multiple domains, and can be cultivated through a learning approach called Dialogical Inquiry. Dialogical Inquiry is known for its benefits of making sense of multiple perspectives, encouraging critical thinking, and developing learner’s capability to learn. However, it currently exists as a quantitative tool, which makes it hard to track and compare learning processes over time. With these concerns, the present research aimed to develop and validate a quantitative tool for the Map of Dialogical Inquiry, focusing Imagining aspect of learning. The Imagining aspect four dimensions: 1) speculative/ look for alternatives, 2) risk taking/ break rules, 3) create/ design, and 4) vision/ imagine. To do so, an exploratory literature review was conducted to better understand the dimensions of Imagining. This included deep-diving into the history of the creation of the Map of Dialogical Inquiry and a review on how “Imagining” has been conceptually defined in the field of social psychology, education, and beyond. Then, we synthesised and validated scales. These scales measured the dimension of Imagination and related concepts like creativity, divergent thinking regulatory focus, and instrumental risk. Thereafter, items were adapted from the aforementioned procured scales to form items that would contribute to the preliminary version of the Imagining Scale. For scale validation, 250 participants were recruited. A Confirmatory Factor Analysis (CFA) sought to establish dimensionality of the Imagining Scale with an iterative procedure in item removal. Reliability and validity of the scale’s dimensions were sought through measurements of Cronbach’s alpha, convergent validity, and discriminant validity. While CFA found that the distinction of Imagining’s four dimensions could not be validated, the scale was able to establish high reliability with a Cronbach alpha of .96. In addition, the convergent validity of the Imagining scale was established. A lack of strong discriminant validity may point to overlaps with other components of the Dialogical Map as a measure of learning. Thus, a holistic approach to forming the tool – encompassing all eight different components may be preferable.Keywords: learning, education, imagining, pedagogy, dialogical teaching
Procedia PDF Downloads 9620771 Digital Storytelling in the ELL Classroom: A Literature Review
Authors: Nicholas Jobe
Abstract:
English Language Learners (ELLs) often struggle in a classroom setting, too embarrassed at their skill level to write or speak in front of peers and too lacking in confidence to practice. Storytelling is an age-old method of teaching that allows learners to remember important details while listening or sharing a narrative. In the modern world, digital storytelling through the use of technological tools such as podcasts and videos allow students to safely interact with each other to build skills in a fun and engaging way that also works as a confidence booster. Specifically using a constructionist approach to learning, digital storytelling allows ELL students to grow and build new and prior knowledge by creating stories via these technological means. Research herein suggests, through the use of case studies and mixed methodologies, that digital storytelling mainly yields positive results for effective learning in an ELL classroom setting.Keywords: digital storytelling, ELL, narrative, podcast
Procedia PDF Downloads 13920770 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 20420769 Designing Teaching Aids for Dyslexia Students in Mathematics Multiplication
Authors: Mohini Mohamed, Nurul Huda Mas’od
Abstract:
This study was aimed at designing and developing an assistive mathematical teaching aid (courseware) in helping dyslexic students in learning multiplication. Computers and multimedia interactive courseware has benefits students in terms of increase learner’s motivation and engage them to stay on task in classroom. Most disability student has short attention span thus with the advantage offered by multimedia interactive courseware allows them to retain the learning process for longer period as compared to traditional chalk and talk method. This study was conducted in a public school at a primary level with the help of three special education teachers and six dyslexic students as participants. Qualitative methodology using interview with special education teachers and observations in classes were conducted. The development of the multimedia interactive courseware in this study was divided to three processes which were analysis and design, development and evaluation. The courseware was evaluated by using User Acceptance Survey Form and interview. Feedbacks from teachers were used to alter, correct and develop the application for a better multimedia interactive courseware.Keywords: disability students, dyslexia, mathematics teaching aid, multimedia interactive courseware
Procedia PDF Downloads 40620768 Integrating Sustainable Development Goals in Teaching Mathematics Using Project Based Learning
Authors: S. Goel
Abstract:
In the current scenario, education should be realistic and nature-friendly. The earlier definition of education was restricted to the holistic development of the child which help them to increase their capacity and helps in social upliftment. But such definition gives a more individualistic aim of education. Due to that individualistic aim, we have become disconnected from nature. So, a school should be a place which provides students with an area to explore. They should get practical learning or learning from nature which is also propounded by Rousseau in the mid-eighteenth century. Integrating Sustainable development goals in the school curriculum will make it possible to connect the nature with the lives of the children in the classroom. Then, students will be more aware and sensitive towards their social and natural surroundings. The research attempts to examine the efficiency of project-based learning in mathematics to create awareness around sustainable development goals. The major finding of the research was that students are less aware of sustainable development goals, but when given time and an appropriate learning environment, students can be made aware of these goals. In this research, project-based learning was used to make students aware of sustainable development goals. Students were given pre test and post test which helped in analyzing their performance. After the intervention, post test result showed that mathematics projects can create an awareness of sustainable development goals.Keywords: holistic development, natural learning, project based learning, sustainable development goals
Procedia PDF Downloads 18120767 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 12720766 The Interactions among Motivation, Persistence, and Learning Abilities as They Relate to Academic Outcomes in Children
Authors: Rachelle M. Johnson, Jenna E. Finch
Abstract:
Motivation, persistence, and learning disability status are all associated with academic performance, but to the author's knowledge, little research has been done on how these variables interact with one another and how that interaction looks different within children with and without learning disabilities. The present study's goal was to examine the role motivation and persistence play in the academic success of children with learning disabilities and how these variables interact. Measurements were made using surveys and direct cognitive assessments on each child. Analyses were run on student's scores in motivation, persistence, and ability to learn compared to other fifth grade students. In this study, learning ability was intended as a proxy for learning disabilities (LDs). This study included a nationally representative sample of over 8,000 fifth-grade children from across the United States. Multiple interactions were found among these variables of motivation, persistence, and motivation as they relate to academic achievement. The major finding of the study was the significant role motivation played in academic achievement. This study shows the importance of measuring the within-group. One key finding was that motivation was associated with academic success and was moderated by the other variables. The interaction results were different for math and reading outcomes, suggesting that reading and math success are different and should be addressed differently. This study shows the importance of measuring the within-group differences in levels of motivation to better understand the academic success of children with and without learning disabilities. This study's findings call for further investigation into motivation and the possible need for motivational intervention for students, especially those with learning disabilitiesKeywords: academic achievement, learning disabilities, motivation, persistence
Procedia PDF Downloads 12320765 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 15020764 A Green Analytical Curriculum for Renewable STEM Education
Authors: Mian Jiang, Zhenyi Wu
Abstract:
We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.Keywords: green analytical chemistry, pencil lead, mercury, renewable
Procedia PDF Downloads 34220763 Understanding the Behavioral Mechanisms of Pavlovian Biases: Intriguing Insights from Replication and Reversal Paradigms
Authors: Sanjiti Sharma, Carol Seger
Abstract:
Pavlovian biases are crucial to the decision-making processes, however, if left unchecked can extend to maladaptive behavior such as Substance Use Disorders (SUDs), anxiety, and much more. This study explores the interaction between Pavlovian biases and goal-directed instrumental learning by examining how each adapts to task reversal. it hypothesized that Pavlovian biases would be slow to adjust after reversal due to their reliance on inflexible learning, whereas the more flexible goal-directed instrumental learning system would adapt more quickly. The experiment utilized a modified Go No-Go task with two phases: replication of existing findings and a task reversal paradigm. Results showed instrumental learning's flexibility, with participants adapting after reversal. However, Pavlovian biases led to decreased accuracy post-reversal, with slow adaptation, especially when conflicting with instrumental objectives. These findings emphasize the inflexible nature of Pavlovian biases and their role in decision-making and cognitive rigidity.Keywords: pavlovian bias, goal-directed learning, cognitive flexibility, learning bias
Procedia PDF Downloads 29