Search results for: ecological damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3693

Search results for: ecological damage

2073 Cost Effectiveness of Slit-Viscoelastic Dampers for Seismic Retrofit of Structures

Authors: Minsung Kim, Jinkoo Kim

Abstract:

In order to reduce or eliminate seismic damage in structures, many researchers have investigated various energy dissipation devices. In this study, the seismic capacity and cost of a slit-viscoelastic seismic retrofit system composed of a steel slit plate and viscoelastic dampers connected in parallel are evaluated. The combination of the two different damping mechanisms is expected to produce enhanced seismic performance of the building. The analysis model of the system is first derived using various link elements in the nonlinear dynamic analysis software Perform 3D, and fragility curves of the structure retrofitted with the dampers are obtained using incremental dynamic analyses. The analysis results show that the displacement of the structure equipped with the hybrid dampers is smaller than that of the structure with slit dampers due to the enhanced self-centering capability of the system. It is also observed that the initial cost of hybrid system required for the seismic retrofit is smaller than that of the structure with viscoelastic dampers. Acknowledgement: This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) through the International Cooperative R&D program(N043100016_Development of low-cost high-performance seismic energy dissipation devices using viscoelastic material).

Keywords: damped cable systems, seismic retrofit, viscous dampers, self-centering

Procedia PDF Downloads 270
2072 Exploring Urbanization-Induced Wetland Loss within the Greater Toronto Area from 2005 to 2015

Authors: Kaushika Vinotheeswaran

Abstract:

The Greater Toronto Area (GTA), located in Ontario, Canada, is among the fastest-growing metropolitan areas in North America. Rapid urbanization within the GTA has led to increased imperviousness and surface runoff, contributing to wetland loss. Wetland cover and land cover data from the Southern Ontario Land Resource Information System were analyzed to characterize wetland loss to built-up areas and land conversions between 2005 and 2015, evaluating the extent of urbanization-induced wetland loss. Spatial analysis revealed a significant increase in the number of wetlands lost from 2005 to 2011 compared to the period from 2011 to 2015, with these losses attributed to increased urban expansions within the GTA. Non-wetland conversions, such as agricultural and impervious built-up uses to support urban expansions, played a significant role in wetland loss. Current approaches to wetland policy implementation and land-use planning strategies do not effectively identify or mitigate damage to wetlands in advance of development, resulting in significant wetland loss. Therefore, wetland conservation policies must be re-evaluated to address gaps in policy practice and focus on minimizing wetland loss.

Keywords: wetland loss, urbanization, impervious, pervious, wetland conservation

Procedia PDF Downloads 71
2071 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: deep excavation, prestressing, pre-stressed piles, shoring system

Procedia PDF Downloads 117
2070 Triploid Rainbow Trout (Oncorhynchus mykiss) for Better Aquaculture and Ecological Risk Management

Authors: N. N. Pandey, Raghvendra Singh, Biju S. Kamlam, Bipin K. Vishwakarma, Preetam Kala

Abstract:

The rainbow trout (Oncorhynchus mykiss) is an exotic salmonid fish, well known for its fast growth, tremendous ability to thrive in diverse conditions, delicious flesh and hard fighting nature in Europe and other countries. Rainbow trout farming has a great potential for its contribution to the mainstream economy of Himalayan states in India and other temperate countries. These characteristics establish them as one of the most widely introduced and cultured fish across the globe, and its farming is also prominent in the cold water regions of India. Nevertheless, genetic fatigue, slow growth, early maturity, and low productivity are limiting the expansion of trout production. Moreover, farms adjacent to natural streams or other water sources are subject to escape of domesticated rainbow trout into the wild, which is a serious environmental concern as the escaped fish is subject to contaminate and disrupt the receiving ecosystem. A decline in production traits due to early maturity prolongs the culture duration and affects the profit margin of rainbow trout farms in India. A viable strategy that could overcome these farming constraints in large scale operation is the production of triploid fish that are sterile and more heterozygous. For better triploidy induction rate (TR), heat shock at 28°C for 10 minutes and pressure shock 9500 psi pressure for 5 minutes is applied to green eggs with 90-100% of triploidy success and 72-80% survival upto swim-up fry stage. There is 20% better growth in aquaculture with triploids rainbow trout over diploids. As compared to wild diploid fish, larger sized and fitter triploid rainbow trout in natural waters attract to trout anglers, and support the development of recreational fisheries by state fisheries departments without the risk of contaminating existing gene pools and disrupting local fish diversity. Overall, enhancement of productivity in rainbow trout farms and trout production in coldwater regions, development of lucrative trout angling and better ecological management is feasible with triploid rainbow trout.

Keywords: rainbow trout, triploids fish, heat shock, pressure shock, trout angling

Procedia PDF Downloads 124
2069 A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers

Authors: Chih Hsing Lin, Wen-Ching Chen, Ssu-Ying Chen, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang

Abstract:

Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively.

Keywords: building structure health monitoring, cost effective, 1-axis accelerometers, real-time diagnosis

Procedia PDF Downloads 372
2068 Concept for Planning Sustainable Factories

Authors: T. Mersmann, P. Nyhuis

Abstract:

In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure.

Keywords: factory planning, stakeholder, systematization, sustainability

Procedia PDF Downloads 455
2067 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 744
2066 Roles of Lysine-63-Linked Ubiquitination in Cell Decision Fate between Cell Proliferation and Apoptosis

Authors: Chargui Abderrahman, Nehdi Afef , BelaïD Amine , Djerbi Nadir, Tauc Michel, Hofman Paul, Mograbi Baharia, El May MichèLe

Abstract:

K63-linked ubiquitination — i.e. conjugation of a chain of ubiquitins (Ub) linked through lys63 — has emerged as a key mechanism regulating signalling transduction pathways. Although critical, very little information is currently available about how subversion of K63 ubiquitination might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cadmium (Cd), a widespread environmental carcinogen and toxicant, is a powerful activator of K63 ubiquitination. Indeed, Cd induces accumulation of K63 polyUb proteins. Importantly, Cd-induced ubiquitination does not stem on oxidative damage or proteasome impairment. Rather, we demonstrate that Cd not only activates K63 ubiquitination but also amplifies their accumulation by overloading the capacity of autophagy pathway. At molecular level, Cd-induced ubiquitination is correlated with stabilization of HIF-1 and the activation of NF-B, two transcription factors. Strikingly, prolonged cell exposure to high Cd concentrations induces an exaggerated K63 ubiquitination that fosters aggresome formation, thus precluding these proteins from interacting with their downstream nuclear targets. We therefore propose that the aberrant activation of K63 ubiquitination by the carcinogen Cadmium could promote cell proliferation and inflammation at low levels while high levels committed cell to death.

Keywords: cadmium, environmental exposure, Lysine-63-ubiquitination, kidney, apoptosis, proliferation, autophagy

Procedia PDF Downloads 210
2065 Design of the Ice Rink of the Future

Authors: Carine Muster, Prina Howald Erika

Abstract:

Today's ice rinks are important energy consumers for the production and maintenance of ice. At the same time, users demand that the other rooms should be tempered or heated. The building complex must equally provide cooled and heated zones, which does not translate as carbon-zero ice rinks. The study provides an analysis of how the civil engineering sector can significantly impact minimizing greenhouse gas emissions and optimizing synergies across an entire ice rink complex. The analysis focused on three distinct aspects: the layout, including the volumetric layout of the premises present in an ice rink; the materials chosen that can potentially use the most ecological structural approach; and the construction methods based on innovative solutions to reduce carbon footprint. The first aspect shows that the organization of the interior volumes and defining the shape of the rink play a significant role. Its layout makes the use and operation of the premises as efficient as possible, thanks to the differentiation between heated and cooled volumes while optimising heat loss between the different rooms. The sprayed concrete method, which is still little known, proves that it is possible to achieve the strength of traditional concrete for the structural aspect of the load-bearing and non-load-bearing walls of the ice rink by using materials excavated from the construction site and providing a more ecological and sustainable solution. The installation of an empty sanitary space underneath the ice floor, making it independent of the rest of the structure, provides a natural insulating layer, preventing the transfer of cold to the rest of the structure and reducing energy losses. The addition of active pipes as part of the foundation of the ice floor, coupled with a suitable system, gives warmth in the winter and storage in the summer; this is all possible thanks to the natural heat in the ground. In conclusion, this study provides construction recommendations for future ice rinks with a significantly reduced energy demand, using some simple preliminary design concepts. By optimizing the layout, materials, and construction methods of ice rinks, the civil engineering sector can play a key role in reducing greenhouse gas emissions and promoting sustainability.

Keywords: climate change, energy optimization, green building, sustainability

Procedia PDF Downloads 68
2064 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads

Authors: S. Kamil Akin, Turgut Acikara

Abstract:

In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.

Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation

Procedia PDF Downloads 439
2063 Seismic Performance Evaluation of Structures with Hybrid Dampers Based on FEMA P-58 Methodology

Authors: Minsung Kim, Hyunkoo Kang, Jinkoo Kim

Abstract:

In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time. This research was supported by a grant (13AUDP-B066083-01) from Architecture & Urban Development Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: FEMA P-58, friction dampers, life cycle cost, seismic retrofit

Procedia PDF Downloads 337
2062 Analysis of Structure-Flow Interaction for Water Brake Mechanism

Authors: Murat Avci, Fatih Kosar, Ismail Yilmaz

Abstract:

In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism.

Keywords: aircraft, rocket, structure-flow, supersonic

Procedia PDF Downloads 160
2061 Environmental Impact Assessment of Ambient Particle Industrial Complex Upon Vegetation Near Settling at El-Fatyah,Libya

Authors: Ashraf M. S. Soliman, Mohsen Elhasadi

Abstract:

The present study was undertaken to evaluate the impact of ambient particles emitted from an industrial complex located at El-Fatyah on growth, phytomass partitioning and accumulation, pigment content and nutrient uptake of two economically important crop species; barley (Hordeum vulgare L.Family: Poaceae) and broad bean (Vicia faba L. Family: Fabaceae) growing in the region. It was obvious from the present investigation that chlorophyll and carotenoid content showed significant responses to the industrial dust. Generally, the total pigment content of the two investigated crops in the two locations continually increased till the plant age reached 70 days after sowing then begins to decrease till the end of the growing season..The total uptake of N, P and K in the two studied species decreased in response to industrial dust in the study area compared to control location. In conclusion, barley and broad bean are very sensitive to air pollutants, and may consider as bioindicators for atmospheric pollution. Pollutants caused damage of their leaves, impair plant growth, hindered nutrient uptake and consequently limit primary productivity.

Keywords: Effect of Industrial Complex on barley and broad bean

Procedia PDF Downloads 537
2060 A Numerical Study on the Seismic Performance of Built-Up Battened Columns

Authors: Sophia C. Alih, Mohammadreza Vafaei, Farnoud Rahimi Mansour, Nur Hajarul Falahi Abdul Halim

Abstract:

Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns.

Keywords: battened column, built-up column, cyclic behavior, seismic design, steel column

Procedia PDF Downloads 256
2059 Characterizing the Fracture Toughness Properties of Aluminum I-Rod Removed from National Research Universal Reactor

Authors: Michael Bach

Abstract:

Extensive weld repair was carried out in 2009 after a leak was detected in the aluminum 5052 vessel of the National Research Universal (NRU) reactor. This was the second vessel installed since 1974. In support of the NRU vessel leak repair and fitness for service assessments, an estimate of property changes due to irradiation exposure is required to extend the service of the reactor until 2018. In order to fully evaluate the property changes in the vessel wall, an Iodine-125 rod (I rod) made from the same material and irradiated in the NRU reactor from 1974 1991, was retrieved and sectioned for microstructure characterization and mechanical testing. The different sections of the I rod were exposed to various levels of thermal neutron fluences from 0 to a maximum of 11.9 x 1022 n/cm2. The end of life thermal neutron fluence of the NRU vessel is estimated to be 2.2 x 1022 n/cm2 at 35 years of service. Tensile test and fracture toughness test was performed on the I-rod material at various axial locations. The changes in tensile properties were attributed primarily to the creation of finely dispersed Mg-Si precipitates that harden the material and reduced the ductility. Despite having a reduction in fracture toughness, the NRU vessel is still operation at the current fluence levels.

Keywords: aluminum alloy, fitness-for-service assessment , fracutre toughness, nuclear reactor, precipitate strengthening, radiation damage, tensile strength

Procedia PDF Downloads 185
2058 A Systematic Review for Promotion of Sustainable Fisheries and Aquaculture: A Global Perspective

Authors: Soma Gholamveisy, Vahid Mirghavameddin

Abstract:

Aquaculture activities face wide environmental, social, and economic problems today. To deal with these problems, the aquaculture business, which is already a highly significant agricultural activity, is influenced by sustainability, which can assure the rural community's safety and food health with minimal environmental damage. The objective of this study's systematic review of the literature (SLR) is to look into the use of global perspective Promotion of Sustainable Fisheries and Aquaculture. SLR aims to identify the goals of a promotional system, also one of its main components. This research seeks to empower, increase economic productivity, facilitate, pay more attention to the sustainability of the environment and inform the audience in this regard. A method used to assess hypotheses, condense the results of past studies or verify the consistency of studies. It presents a succinct analysis of original research using an unambiguous and verifiable approach. A thorough repository with a vast array of papers and effective exploration methods are frequently utilized in a systematic literature review, enabling the application of advanced logical statements. A comprehensive literature review was carried out to ensure that the most relevant studies were included. This type of review clarifies publication selection criteria and allows evaluation of the studies conducted and their repetition or extension.

Keywords: systematic review, sustainable, fisheries, aquaculture

Procedia PDF Downloads 95
2057 A New Instrumented Drop-Weight Test Machine for Studying the Impact Behaviour of Reinforced Concrete Beams

Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams

Abstract:

Structures can be subjected to impact loading from various sources like earthquake, tsunami, missiles and explosions. The impact loading can cause different degrees of damage to concrete structures. The demand for strengthening and rehabilitation of damaged structures is increasing. In recent years, Car0bon Fibre Reinforced Polymer (CFRP) matrix composites has gain more attention for strengthening and repairing these structures. To study the impact behaviour of the reinforced concrete (RC) beams strengthened or repaired using CFRP, a heavy impact test machine was designed and manufactured .The machine included a newly designed support system for beams together with various instrumentation. This paper describes the support design configuration of the impact test machine, instrumentation and dynamic analysis of the concrete beams. To evaluate the efficiency of the new impact test machine, experimental impact tests were conducted on simple supported reinforced concrete beam. Different methods were used to determine the impact force and impact response of the RC beams in terms of inertia force, maximum deflection, reaction force and fracture energy. The manufactured impact test machine was successfully used in testing RC beams under impact loading and used successfully to test the reinforced concrete beams strengthened or repaired using CFRP under impact loading.

Keywords: beam, concrete, impact, machine

Procedia PDF Downloads 424
2056 Inflammatory Alleviation on Microglia Cells by an Apoptotic Mimicry

Authors: Yi-Feng Kao, Huey-Jine Chai, Chin-I Chang, Yi-Chen Chen, June-Ru Chen

Abstract:

Microglia is a macrophage that resides in brain, and overactive microglia may result in brain neuron damage or inflammation. In this study, the phospholipids was extracted from squid skin and manufactured into a liposome (SQ liposome) to mimic apoptotic body. We then evaluated anti-inflammatory effects of SQ liposome on mouse microglial cell line (BV-2) by lipopolysaccharide (LPS) induction. First, the major phospholipid constituents in the squid skin extract were including 46.2% of phosphatidylcholine, 18.4% of phosphatidylethanolamine, 7.7% of phosphatidylserine, 3.5% of phosphatidylinositol, 4.9% of Lysophosphatidylcholine and 19.3% of other phospholipids by HPLC-UV analysis. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the squid skin extract were 11.8 and 28.7%, respectively. The microscopic images showed that microglia cells can engulf apoptotic cells or SQ-liposome. In cell based studies, there was no cytotoxicity to BV-2 as the concentration of SQ-liposome was less than 2.5 mg/mL. The LPS induced pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significant suppressed (P < 0.05) by pretreated 0.03~2.5mg/ml SQ liposome. Oppositely, the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10) secretion were enhanced (P < 0.05). The results suggested that SQ-liposome possess anti-inflammatory properties on BV-2 and may be a good strategy for against neuro-inflammatory disease.

Keywords: apoptotic mimicry, neuroinflammation, microglia, squid processing by-products

Procedia PDF Downloads 483
2055 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities

Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu

Abstract:

This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.

Keywords: fragility, friction pendulum bearing, nonstructural component, seismic

Procedia PDF Downloads 152
2054 Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment

Authors: Vera Karla S. Caingles, Glen A. Lorenzo

Abstract:

Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment.

Keywords: collapsibility, correlation, expansiveness, landslide, plasticity

Procedia PDF Downloads 160
2053 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 131
2052 Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study

Authors: Reza Ziaie Moayed, Maedeh Akhavan Tavakkoli

Abstract:

This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs).

Keywords: liquefaction, cyclic resistance ratio, SPT test, clay soil, cohesion soils

Procedia PDF Downloads 102
2051 Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings

Authors: Mehmet Akköse

Abstract:

In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other.

Keywords: near-fault ground motion, pounding analysis, RC buildings, SAP2000

Procedia PDF Downloads 263
2050 Solving the Refugee Problem in the Modern State System: The Philosophical Dilemma of Sovereignty and Human Right

Authors: Xiaoman Dong

Abstract:

The refugee problem has a long history, but the scale and severity of modern refugee crises demand us to consider if the progress of political history exacerbates the refugee problem. This paper argues that although sovereignty owes its legitimacy to the protection of human rights, the modern state system complicates the refugee problem by first introducing then blurring the line between human rights and civil rights, and making national identity indispensable to basic livelihood and dignity. This paper first explains the source of the modern state system’s legitimacy by putting it in the context of social contract theories and the politics of nation-building. It then discusses how states create the concept of statelessness, which leads to more violations on human rights. Using historical records of the League of Nations High Commission for Refugees and the United Nations High Commissioner for Refugees, this paper reveals that neither the refugee problem of the Cold-War period nor the current refugee crisis is collateral damage of war, but rather the consequence of intentional exclusionary policies produced out of political interests. Finally, it contends that if the modern state system is to sustain, it cannot prioritize the protection of civil rights of a particular group over the protection of basic human rights of all.

Keywords: burden sharing, human rights, legitimacy of state, positive externality, sovereignty

Procedia PDF Downloads 192
2049 Canada Deuterium Uranium Updated Fire Probabilistic Risk Assessment Model for Canadian Nuclear Plants

Authors: Hossam Shalabi, George Hadjisophocleous

Abstract:

The Canadian Nuclear Power Plants (NPPs) use some portions of NUREG/CR-6850 in carrying out Fire Probabilistic Risk Assessment (PRA). An assessment for the applicability of NUREG/CR-6850 to CANDU reactors was performed and a CANDU Fire PRA was introduced. There are 19 operating CANDU reactors in Canada at five sites (Bruce A, Bruce B, Darlington, Pickering and Point Lepreau). A fire load density survey was done for all Fire Safe Shutdown Analysis (FSSA) fire zones in all CANDU sites in Canada. National Fire Protection Association (NFPA) Standard 557 proposes that a fire load survey must be conducted by either the weighing method or the inventory method or a combination of both. The combination method results in the most accurate values for fire loads. An updated CANDU Fire PRA model is demonstrated in this paper that includes the fuel survey in all Canadian CANDU stations. A qualitative screening step for the CANDU fire PRA is illustrated in this paper to include any fire events that can damage any part of the emergency power supply in addition to FSSA cables.

Keywords: fire safety, CANDU, nuclear, fuel densities, FDS, qualitative analysis, fire probabilistic risk assessment

Procedia PDF Downloads 138
2048 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 194
2047 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique

Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras

Abstract:

Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.

Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant

Procedia PDF Downloads 226
2046 Experimental Modal Analysis of Kursuncular Minaret

Authors: Yunus Dere

Abstract:

Minarets are tower like structures where the call to prayer of Muslims is performed. They have a symbolic meaning and sacred place among Muslims. Being tall and slender, they are prone to damage under earthquakes and strong winds. Kursuncular stone minaret was built around thirty years ago in Konya/TURKEY. Its core and helical stairs are made of reinforced concrete. Its stone spire was damaged during a light earthquake. Its spire is later replaced with a light material covered with lead sheets. In this study, the natural frequencies and mode shapes of Kursuncular minaret is obtained experimentally and analytically. First an ambient vibration test is carried out using a data acquisition system with accelerometers located at four locations along the height of the minaret. The collected vibration data is evaluated by operational modal analysis techniques. For the analytical part of the study, the dimensions of the minaret are accurately measured and a detailed 3D solid finite element model of the minaret is generated. The moduli of elasticity of the stone and concrete are approximated using the compressive strengths obtained by Windsor Pin tests. Finite element modal analysis of the minaret is carried out to get the modal parameters. Experimental and analytical results are then compared and found in good agreement.

Keywords: experimental modal analysis, stone minaret, finite element modal analysis, minarets

Procedia PDF Downloads 328
2045 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 282
2044 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.

Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns

Procedia PDF Downloads 315