Search results for: data exchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26374

Search results for: data exchange

24754 Online Faculty Professional Development: An Approach to the Design Process

Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova

Abstract:

Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.

Keywords: community of practice, customized, faculty development, inclusive design

Procedia PDF Downloads 179
24753 4G LTE Dynamic Pricing: The Drivers, Benefits, and Challenges

Authors: Ahmed Rashad Harb Riad Ismail

Abstract:

The purpose of this research is to study the potential of Dynamic Pricing if deployed by mobile operators and analyse its effects from both operators and consumers side. Furthermore, to conclude, throughout the research study, the recommended conditions for successful Dynamic Pricing deployment, recommended factors identifying the type of markets where Dynamic Pricing can be effective, and proposal for a Dynamic Pricing stakeholders’ framework were presented. Currently, the mobile telecommunications industry is witnessing a dramatic growth rate in the data consumption, being fostered mainly by higher data speed technology as the 4G LTE and by the smart devices penetration rates. However, operators’ revenue from data services lags behind and is decupled from this data consumption growth. Pricing strategy is a key factor affecting this ecosystem. Since the introduction of the 4G LTE technology will increase the pace of data growth in multiples, consequently, if pricing strategies remain constant, then the revenue and usage gap will grow wider, risking the sustainability of the ecosystem. Therefore, this research study is focused on Dynamic Pricing for 4G LTE data services, researching the drivers, benefits and challenges of 4G LTE Dynamic Pricing and the feasibility of its deployment in practice from different perspectives including operators, regulators, consumers, and telecommunications equipment manufacturers point of views.

Keywords: LTE, dynamic pricing, EPC, research

Procedia PDF Downloads 340
24752 Developing a Discourse Community of Doctoral Students in a Multicultural Context

Authors: Jinghui Wang, Minjie Xing

Abstract:

The increasing number of international students for doctoral education has brought vitality and diversity to the educational environment in China, and at the same time constituted a new challenge to the English teaching in the higher education as the majority of international students come from developing countries where English is not their first language. To make their contribution to knowledge development and technical innovation, these international doctoral students need to present their research work in English, locally and globally. This study reports an exploratory study with an emphasis on the cognition and construction of academic discourse in the multicultural context. The present study aims to explore ways to better prepare them for international academic exchange in English. Voluntarily, all international doctoral students (n = 81) from 35 countries enrolled in the English Course: Speaking and Writing as a New Scientist, participated in the study. Two research questions were raised: 1) What did these doctoral students say about their cognition and construction of English academic discourses? 2) How did they manage to develop their productive skills in a multicultural context? To answer the research questions, data were collected from self-reports, in-depth interviews, and video-recorded class observations. The major findings of the study suggest that the participants to varying degrees benefitted from the cognition and construction of English academic discourse in the multicultural context. Specifically, 1) The cognition and construction of meta-discourse allowed them to construct their own academic discourses in English; 2) In the light of Swales’ CARS Model, they became sensitive to the “moves” involved in the published papers closely related to their study, and learned to use them in their English academic discourses; 3) Multimodality-driven presentation (multimedia modes) enabled these doctoral student to have their voice heard for technical innovation purposes; 4) Speaking as a new scientist, every doctoral student felt happy and able to serve as an intercultural mediator in the multicultural context, bridging the gap between their home culture and the global culture; and most importantly, 5) most of the participants reported developing an English discourse community among international doctoral students, becoming resourceful and productive in the multicultural context. It is concluded that the cognition and construction of academic discourse in the multicultural context proves to be conducive to the productivity and intercultural citizenship education of international doctoral students.

Keywords: academic discourse, international doctoral students, meta-discourse, multicultural context

Procedia PDF Downloads 387
24751 Prediction of Wind Speed by Artificial Neural Networks for Energy Application

Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui

Abstract:

In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.

Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed

Procedia PDF Downloads 698
24750 A Case Study at PT Bank XYZ on The Role of Compensation, Career Development, and Employee Engagement towards Employee Performance

Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari

Abstract:

This study aims to examine, analyze and explain the impacts of compensation, career development and employee engagement to employee’s performance partially and simultaneously (Case Study at PT Bank XYZ). The research design used is quantitative descriptive research causality involving 30 respondents. Sources of data are from primary and secondary data, primary data obtained from questionnaires distribution and secondary data obtained from journals and books. Data analysis used model test using smart application PLS 3 that consists of test outer model and inner model. The results showed that compensation, career development and employee engagement partially have a positive impact on employee performance, while they have a positive and significant impact on employee performance simultaneously. The independent variable has the greatest impact is the employee engagement.

Keywords: compensation, career development, employee engagement, employee performance

Procedia PDF Downloads 155
24749 The Need for Selective Credit Policy Implementation: Case of Croatia

Authors: Drago Jakovcevic, Mihovil Andelinovic, Igor Husak

Abstract:

The aim of this paper is to explore the economic circumstances in which the selective credit policy, the least used instrument of four types of instruments on disposal to central banks, should be used. The most significant example includes the use of selective credit policies in response to the emergence of the global financial crisis by the FED. Specifics of the potential use of selective credit policies as the instigator of economic growth in Croatia, a small open economy, are determined by high euroization of financial system, fixed exchange rate and long-term trend growth of external debt that is related to the need to maintain high levels of foreign reserves. In such conditions, the classic forms of selective credit policies are unsuitable for the introduction. Several alternative approaches to implement selective credit policies are examined in this paper. Also, thorough analysis of distribution of selective monetary policy loans among economic sectors in Croatia is conducted in order to minimize the risk of investing funds and maximize the return, in order to influence the GDP growth.

Keywords: global crisis, selective credit policy, small open economy, Croatia

Procedia PDF Downloads 437
24748 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: bentonite, leachate, shear strength parameters, unconfined compression test

Procedia PDF Downloads 110
24747 Spectral Anomaly Detection and Clustering in Radiological Search

Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk

Abstract:

Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.

Keywords: radiological search, radiological mapping, radioactivity, radiation protection

Procedia PDF Downloads 698
24746 Knowledge Engineering Based Smart Healthcare Solution

Authors: Rhaed Khiati, Muhammad Hanif

Abstract:

In the past decade, smart healthcare systems have been on an ascendant drift, especially with the evolution of hospitals and their increasing reliance on bioinformatics and software specializing in healthcare. Doctors have become reliant on technology more than ever, something that in the past would have been looked down upon, as technology has become imperative in reducing overall costs and improving the quality of patient care. With patient-doctor interactions becoming more necessary and more complicated than ever, systems must be developed while taking into account costs, patient comfort, and patient data, among other things. In this work, we proposed a smart hospital bed, which mixes the complexity and big data usage of traditional healthcare systems with the comfort found in soft beds while taking certain concerns like data confidentiality, security, and maintaining SLA agreements, etc. into account. This research work potentially provides users, namely patients and doctors, with a seamless interaction with to their respective nurses, as well as faster access to up-to-date personal data, including prescriptions and severity of the condition in contrast to the previous research in the area where there is lack of consideration of such provisions.

Keywords: big data, smart healthcare, distributed systems, bioinformatics

Procedia PDF Downloads 202
24745 Cytotoxic Effect of Purified and Crude Hyaluronidase Enzyme on Hep G2 Cell Line

Authors: Furqan M. Kadhum, Asmaa A. Hussein, Maysaa Ch. Hatem

Abstract:

Hyaluronidase enzyme was purified from the clinical isolate Staphyloccus aureus in three purification steps, first by precipitation with 90% saturated ammonium sulfate, ion exchange chromatography on DEAE-Cellulose, and gel filtration chromatography throughout Sephacryl S-300. Specific activity of the purified enzyme was reached 930 U/mg protein with 7.4 folds of purification and 46.5% recovery. The enzyme has an average molecular weight of about 69 kDa, with an optimum pH of enzyme activity and stability at pH 7, also the optimum temperature for activity was 37oC. The enzyme was stable with full activity at a temperature ranged between 30-40 oC. Metal ions showed variable inhibitory degree with the strongest effect for Fe+3, however, the chelating and reducing agents had no or little effects. Cytotoxic studies for purified and crude hyaluronidase against cancer cell Hep G2 type at different enzyme concentrations and exposure times showed that the inhibition effect of both crude and purified enzyme increased by increasing the enzyme concentration with no change was observed at 24hr, while at 48 and 72 hrs the same inhibition rate were observed for purified enzyme and differ for the crude filtrate.

Keywords: hyaluronidase, S. aureus, metal ions, cytotoxicity

Procedia PDF Downloads 450
24744 Design of an Instrumentation Setup and Data Acquisition System for a GAS Turbine Engine Using Suitable DAQ Software

Authors: Syed Nauman Bin Asghar Bukhari, Mohtashim Mansoor, Mohammad Nouman

Abstract:

Engine test-Bed system is a fundamental tool to measure dynamic parameters, economic performance, and reliability of an aircraft Engine, and its automation and accuracy directly influences the precision of acquired and analysed data. In this paper, we present the design of digital Data Acquisition (DAQ) system for a vintage aircraft engine test bed that lacks the capability of displaying all the analyzed parameters at one convenient location (one panel-one screen). Recording such measurements in the vintage test bed is not only time consuming but also prone to human errors. Digitizing such measurement system requires a Data Acquisition (DAQ) system capable of recording these parameters and displaying them on one screen-one panel monitor. The challenge in designing upgrade to the vintage systems arises with a need to build and integrate digital measurement system from scratch with a minimal budget and modifications to the existing vintage system. The proposed design not only displays all the key performance / maintenance parameters of the gas turbine engines for operator as well as quality inspector on separate screens but also records the data for further processing / archiving.

Keywords: Gas turbine engine, engine test cell, data acquisition, instrumentation

Procedia PDF Downloads 128
24743 Dividend Payout and Capital Structure: A Family Firm Perspective

Authors: Abhinav Kumar Rajverma, Arun Kumar Misra, Abhijeet Chandra

Abstract:

Family involvement in business is universal across countries, with varying characteristics. Firms of developed economies have diffused ownership structure; however, that of emerging markets have concentrated ownership structure, having resemblance with that of family firms. Optimization of dividend payout and leverage are very crucial for firm’s valuation. This paper studies dividend paying behavior of National Stock Exchange listed Indian firms from financial year 2007 to 2016. The final sample consists of 422 firms and of these more than 49% (207) are family firms. Results reveal that family firms pay lower dividend and are more leveraged compared to non-family firms. This unique data set helps to understand dividend behavior and capital structure of sample firms over a long-time period and across varying family ownership concentration. Using panel regression models, this paper examines factors affecting dividend payout and capital structure and establishes a link between the two using Two-stage Least Squares regression model. Profitability shows a positive impact on dividend and negative impact on leverage, confirming signaling and pecking order theory. Further, findings support bankruptcy theory as firm size has a positive relation with dividend and leverage and volatility shows a negative relation with both dividend and leverage. Findings are also consistent with agency theory, family ownership concentration has negative relation with both dividend payments and leverage. Further, the impact of family ownership control confirms the similar finding. The study further reveals that firms with high family ownership concentration (family control) do have an impact on determining the level of private benefits. Institutional ownership is not significant for dividend payments. However, it shows significant negative relation with leverage for both family and non-family firms. Dividend payout and leverage show mixed association with each other. This paper provides evidence of how varying level of family ownership concentration and ownership control influences the dividend policy and capital structure of firms in an emerging market like India and it can have significant contribution towards understanding and formulating corporate dividend policy decisions and capital structure for emerging economies, where majority of firms exhibit behavior of family firm.

Keywords: dividend, family firms, leverage, ownership structure

Procedia PDF Downloads 285
24742 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 308
24741 The Contemporary Dynamics of Board Composition and Executive Compensation for R&D Spending

Authors: Farheen Akram

Abstract:

Research and Development (R&D) is the most crucial element of the firm’s survival in a competitive business environment. R&D is a long-term investment; therefore, executives having the power to make the investment decisions may be pessimistic when their compensation is closely linked with short-term firm performance. Thus, the current study investigates the impact of board composition and executives’ compensation (cash or short-term benefits and LTIs) on R&D spending using a sample of 85 S&P/100 firms listed on the Australian Stock Exchange (ASX) in 2017. SmartPLS (v.3.2.7) was used to evaluate the proposed model of current research. The empirical findings of this study indicate that board composition has a significant and positive effect on R&D spending. While, as expected, executive cash compensation has negative and Long-Term-Incentives (LTIs) has a positive impact on R&D spending. Based on current findings, the study suggested that myopic behavior of CEOs and top management towards long-term value creation investment like R&D can be controlled by using long-term compensation rewards.

Keywords: cash compensation, LTIs, board composition, R&D spending

Procedia PDF Downloads 194
24740 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 185
24739 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 433
24738 The Impact of China’s Waste Import Ban on the Waste Mining Economy in East Asia

Authors: Michael Picard

Abstract:

This proposal offers to shed light on the changing legal geography of the global waste economy. Global waste recycling has become a multi-billion-dollar industry. NASDAQ predicts the emergence of a worldwide 1,296G$ waste management market between 2017 and 2022. Underlining this evolution, a new generation of preferential waste-trade agreements has emerged in the Pacific. In the last decade, Japan has concluded a series of bilateral treaties with Asian countries, and most recently with China. An agreement between Tokyo and Beijing was formalized on 7 May 2008, which forged an economic partnership on waste transfer and mining. The agreement set up International Recycling Zones, where certified recycling plants in China process industrial waste imported from Japan. Under the joint venture, Chinese companies salvage the embedded value from Japanese industrial discards, reprocess them and send them back to Japanese manufacturers, such as Mitsubishi and Panasonic. This circular economy is designed to convert surplus garbage into surplus value. Ever since the opening of Sino-Japanese eco-parks, millions of tons of plastic and e-waste have been exported from Japan to China every year. Yet, quite unexpectedly, China has recently closed its waste market to imports, jeopardizing Japan’s billion-dollar exports to China. China notified the WTO that, by the end of 2017, it would no longer accept imports of plastics and certain metals. Given China’s share of Japanese waste exports, a complete closure of China’s market would require Japan to find new uses for its recyclable industrial trash generated domestically every year. It remains to be seen how China will effectively implement its ban on waste imports, considering the economic interests at stake. At this stage, what remains to be clarified is whether China's ban on waste imports will negatively affect the recycling trade between Japan and China. What is clear, though, is the rapid transformation in the legal geography of waste mining in East-Asia. For decades, East-Asian waste trade had been tied up in an ‘ecologically unequal exchange’ between the Japanese core and the Chinese periphery. This global unequal waste distribution could be measured by the Environmental Stringency Index, which revealed that waste regulation was 39% weaker in the Global South than in Japan. This explains why Japan could legally export its hazardous plastic and electronic discards to China. The asymmetric flow of hazardous waste between Japan and China carried the colonial heritage of international law. The legal geography of waste distribution was closely associated to the imperial construction of an ecological trade imbalance between the Japanese source and the Chinese sink. Thus, China’s recent decision to ban hazardous waste imports is a sign of a broader ecological shift. As a global economic superpower, China announced to the world it would no longer be the planet’s junkyard. The policy change will have profound consequences on the global circulation of waste, re-routing global waste towards countries south of China, such as Vietnam and Malaysia. By the time the Berlin Conference takes place in May 2018, the presentation will be able to assess more accurately the effect of the Chinese ban on the transboundary movement of waste in Asia.

Keywords: Asia, ecological unequal exchange, global waste trade, legal geography

Procedia PDF Downloads 214
24737 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 389
24736 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data

Authors: Qiuxiao Chen, Yan Hou, Ning Wu

Abstract:

As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.

Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost

Procedia PDF Downloads 254
24735 Syntactic Errors in Written Assessments of Non-Native English-Speaking Undergraduate Students and Pedagogical Implications in Correcting Grammatical Mistakes

Authors: Cheng Shuk Ling

Abstract:

This paper examines the English syntactic errors and their patterns in the written assignments of a General Education course at City University of Hong Kong. Subjects are 60 local and non-local (exchange) undergraduate students who are all EFL learners and L2 users with diversified education and disciplinary background (i.e. their major of study), which are unrelated to English language studies. The objective of this paper brings to the foreground a broad discussion of EFL/L2 undergraduate learners’ average syntactic ability in terms of written assessment. This paper is an attempt in classifying the patterns and categories of syntactic errors committed by students who were brought up and educated in non-native English-speaking countries. Thus, pedagogical recommendations are offered for both EFL/L2 learners and educators in tertiary education settings in such ways as to calibrate how and in what manner English language as the medium of instruction can lead to more enduring effects in learners within non-native English-speaking countries.

Keywords: syntactic errors, english as a foreign language, second language users, pedagogy

Procedia PDF Downloads 89
24734 Multimedia Container for Autonomous Car

Authors: Janusz Bobulski, Mariusz Kubanek

Abstract:

The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.

Keywords: an autonomous car, image processing, lidar, obstacle detection

Procedia PDF Downloads 229
24733 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm

Authors: Monojit Manna, Arpan Adhikary

Abstract:

In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.

Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection

Procedia PDF Downloads 81
24732 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations

Authors: Ramon Santana

Abstract:

The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.

Keywords: fingerprint, template protection, bio-cryptography, minutiae protection

Procedia PDF Downloads 173
24731 Improving Digital Data Security Awareness among Teacher Candidates with Digital Storytelling Technique

Authors: Veysel Çelik, Aynur Aker, Ebru Güç

Abstract:

Developments in information and communication technologies have increased both the speed of producing information and the speed of accessing new information. Accordingly, the daily lives of individuals have started to change. New concepts such as e-mail, e-government, e-school, e-signature have emerged. For this reason, prospective teachers who will be future teachers or school administrators are expected to have a high awareness of digital data security. The aim of this study is to reveal the effect of the digital storytelling technique on the data security awareness of pre-service teachers of computer and instructional technology education departments. For this purpose, participants were selected based on the principle of volunteering among third-grade students studying at the Computer and Instructional Technologies Department of the Faculty of Education at Siirt University. In the research, the pretest/posttest half experimental research model, one of the experimental research models, was used. In this framework, a 6-week lesson plan on digital data security awareness was prepared in accordance with the digital narration technique. Students in the experimental group formed groups of 3-6 people among themselves. The groups were asked to prepare short videos or animations for digital data security awareness. The completed videos were watched and evaluated together with prospective teachers during the evaluation process, which lasted approximately 2 hours. In the research, both quantitative and qualitative data collection tools were used by using the digital data security awareness scale and the semi-structured interview form consisting of open-ended questions developed by the researchers. According to the data obtained, it was seen that the digital storytelling technique was effective in creating data security awareness and creating permanent behavior changes for computer and instructional technology students.

Keywords: digital storytelling, self-regulation, digital data security, teacher candidates, self-efficacy

Procedia PDF Downloads 130
24730 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon

Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba

Abstract:

In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.

Keywords: population, road network, statistical correlations, remote sensing

Procedia PDF Downloads 168
24729 Chinese College Students’ Intercultural Competence and Culture Learning Through Telecollaboration

Authors: Li Yuqing

Abstract:

Fostering the development of intercultural (communicative) competence (IC) is one way to equip our students with the linguistic and cultural skills to communicate effectively with people from diverse backgrounds, particularly English majors who are most likely to encounter multicultural work environments in the future. The purpose of this study is to compare the English majors' intercultural competence in terms of cognitive, affective, and behavioral aspects before and after a ten-week telecollaboration program between 23 English majors at a Chinese university and 23 American students enrolled in a Chinese class at an American university, and analyze their development during the program. The results indicate that subjects' cognitive, affective, and behavioral perceptions of IC improved significantly over time. In addition, the program had significant effects on the participants' “Interaction Confidence,” “Interaction Engagement,” and “Interaction Enjoyment” - three components of intercultural sensitivity - as well as their overall intercultural effectiveness (except for “Message Skills”). With the widespread use of the internet, this type of online cultural exchange has a promising future, as suggested by the findings of the current study.

Keywords: intercultural competence, English majors, computer-mediated communication, telecollaboration

Procedia PDF Downloads 78
24728 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 517
24727 Wikipedia World: A Computerized Process for Cultural Heritage Data Dissemination

Authors: L. Rajaonarivo, M. N. Bessagnet, C. Sallaberry, A. Le Parc Lacayrelle, L. Leveque

Abstract:

TCVPYR is a European FEDER (European Regional Development Fund) project which aims to promote tourism in the French Pyrenees region by leveraging its cultural heritage. It involves scientists from various domains (geographers, historians, anthropologists, computer scientists...). This paper presents a fully automated process to publish any dataset as Wikipedia articles as well as the corresponding linked information on Wikidata and Wikimedia Commons. We validate this process on a sample of geo-referenced cultural heritage data collected by TCVPYR researchers in different regions of the Pyrenees. The main result concerns the technological prerequisites, which are now in place. Moreover, we demonstrated that we can automatically publish cultural heritage data on Wikimedia.

Keywords: cultural heritage dissemination, digital humanities, open data, Wikimedia automated publishing

Procedia PDF Downloads 130
24726 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa

Authors: Ayanda Ndokwana, Stanley Fore

Abstract:

Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.

Keywords: bioethanol, economic evaluation, maize, profitability indicators

Procedia PDF Downloads 237
24725 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 126